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Abstract—Electric Network Frequency (ENF) fluctuations
based forensic analysis is recently proposed for time-of-recording
estimation, timestamp verification, and clip insertion/deletion
forgery detection in multimedia recordings. Due to the load
control mechanism of the electric grid, ENF fluctuations exhibit
pseudo-periodic behavior and generally require a long duration
of recording for forensic analysis. In this paper, a statistical
study of the ENF signal is conducted to model it using an
autoregressive process. The proposed model is used to understand
the effect of the ENF signal duration and signal-to-noise ratio
on the detection performance of a timestamp verification system
under a hypothesis detection framework. Based on the proposed
model, a decorrelation based approach is studied to match the
ENF signals for timestamp verification. The proposed approach
requires a shorter duration of the ENF signal to achieve the same
detection performance as without decorrelation. Experiments are
conducted on audio data to demonstrate an improvement in the
detection performance of the proposed approach.

Index Terms—Electrical Network Frequency, Audio Authenti-
cation, Timestamp, Information Forensics.

I. INTRODUCTION

In the modern era, a huge amount of digital information

is available in the form of audio, image, video, and other

sensor recordings. These recordings are generally stored on

disks and other storage devices, and have metadata describing

such important information as the time and the place of

recording. However, digital tools can be used to modify the

stored information. Developing forensic tools to authenticate

multimedia recordings is an active area of research. In the

recent years, Electric Network Frequency (ENF) signal based

forensics techniques are increasingly being used to authenti-

cate digital recordings [1] [2]. ENF is the supply frequency

of electric power in distribution networks of a power grid.

The nominal value of the ENF is 60 Hz in the United States

and most parts of the Americas, and 50 Hz in Europe and

Asia. An important characteristic of the ENF is that its value

fluctuates around the nominal value because of varying loads

on power grid [1]. These fluctuations are consistent across the

geographical area covered in the same power grid [1] [3].

ENF signal is embedded in the digital audio recording

made near the power sources because of the interference from

electromagnetic fields generated by the power sources. Digital

video recordings in an indoor fluorescent or incandescent light-

ing conditions can capture the ENF signal from near invisible

flickering of the light sources [2]. This intrinsic embedding of

the ENF signal in multimedia recordings has been used for

such forensic applications as time-of-recording estimation and

clip insertion/deletion forgery detection [1] [2]. Furthermore,

our previous work [2] demonstrated the application of the ENF

signal analysis to determine if the audio track in a given video

was recorded with the visual data or superimposed later.

The methodology used in ENF signal analysis for time-

of-recording estimation requires extraction of the ENF signal

from a given audio or video by means of a temporal bandpass

filtering followed by instantaneous frequency estimation as

a function of time. These estimated frequencies are com-

pared with a ENF signal database that contains historic ENF

readings. The time corresponding to the maximum similarity

between the ENF signal from multimedia and the ENF signal

from the database is taken as the estimated time-of-recording

of the given multimedia.

The current techniques in the literature for the ENF sig-

nal analysis typically require a long duration of multimedia

recording to measure the similarity between the extracted ENF

signal with the ENF database as ENF patterns may exhibit

self-similarity over time. This pseudo periodic nature of ENF

patterns is due to the cyclic nature of power demand and

supply, and the control mechanism used to regulate power

grids [4]. An increase in the load on a grid causes the

supply frequency to drop temporarily; the control mechanism

senses the frequency drop and additional power is drawn from

adjoining areas to compensate for the increased demand. As

a result, the load in adjoining areas also increases, and supply

frequency drops. A similar mechanism is used to compensate

for an excess supply that results in a surge in supply frequency.

In the forensic applications of the ENF analysis, the effect of

such pseudo periodic patterns is reduced if multimedia signal

is of sufficiently long duration, typically 10-15 minutes [5].

Developing tools to authenticate relatively short recordings

will help in enhancing the benefit and impact of the ENF

based forensic techniques.

In this paper, we carry out a statistical study of the ENF

signal and model it using an autoregressive process. This

modeling helps us decompose the ENF signal into two com-

ponents: a predictive process and an innovation process. We

then use this proposed model to examine the performance

under a simple binary hypothesis detection framework and to

understand the effect of clip duration on ENF matching. The

application scenario considered here is timestamp verification,

where the authenticity of the attached timestamp in the meta-

data of a given recording needs to be verified. We propose

the use of decorrelated innovation process for ENF matching,

and experimentally validate the proposed approach using a
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25-hours audio data. To the best of our knowledge, this is

the first step in the literature towards addressing the statistical

analysis and improved matching techniques of ENF signals.

The proposed innovation process based matching may also be

beneficial for a forensic examiner analyzing a possible forgery

on ENF signals for different counter forensic scenarios [6].

The rest of this paper is organized as follows. In Section II,

we describe an autoregressive model used to analyze the ENF

signal. In Section III, we formulate the timestamp verifica-

tion problem under a binary hypothesis testing framework

and propose a decorrelation based approach to improve the

detection performance of the system. In Section IV, we carry

out experiments on audio data to study the performance of

timestamp verification under the proposed model and using

the decorrelation based approach for ENF matching. Section V

concludes the paper.

II. AUTOREGRESSIVE (AR) MODEL FOR ENF

Autoregressive (AR) model is a common way of analyzing

a correlated time series. An AR process is a regression of the

current value of a time series based on the previous observed

values. A time-series u(n), u(n−1), . . . , u(n−M) represents
realization of a real AR process of order M , denoted by

AR(M ), if it satisfies the following difference equation:

u(n) + a1u(n− 1) + . . .+ aMu(n−M) = v(n), (1)

where a1, a2, . . . , aM are the constants representing a stable

filter, and known as the AR coefficients, and v(n) is a

white noise process and uncorrelated with u(n − 1), u(n −
2), . . . , u(n − M). The process v(n) brings randomness to

u(n) and is known as an innovation process. In terms of

linear filtering, an AR(M ) can be generated by feeding v(n)
as an input to an all pole filter whose z-transform is given

by A(z) = 1
1−

∑
M

m=1
amz−m

. Additionally, if v(n) is a zero-

mean Gaussian process of power σ2
v , the output process u(n)

is also a zero-mean Gaussian wide sense stationary (WSS)

process, and its power spectral density is a function of the

filter parameters a1, a2, . . . , aM , and σ2
v . Given such a process

u(n), an estimate of the model coefficients and statistics of

v(n) can be obtained by solving a set of linear equations,

known as the Yule-Walker equations. For detailed discussions

on AR processes, readers are referred to [7].

A. Statistics of ENF signal

Let f(n) denote ENF signal at any time n, and let F(n) =
[f(n), f(n+1), . . . , f(n+N − 1)]T represent a vector of N

consecutive values of ENF at a given time instant n. The mean

function µ̂(n) and the auto-correlation function r̂(n, n + k)
of ENF signal from a frame of N samples are estimated as

follows:

µ̂(n) =
1

N

N−1∑

l=0

f(n+ l)

r̂(n, n+ k) =
1

N

N−1∑

l=0

[f(n+ l)][f(n+ l + k)]
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Fig. 1. The mean and the autocorrelation function of a ENF signal recording.

We record a ENF signal in the United States from the

power-mains supply and estimate its instantaneous frequency,

for example, using the weighted energy spectrogram method

described in [2] [8]. We obtain an estimate of the instantaneous

frequency every 16 seconds.

The plots of µ̂(n) and r̂(n, n + 100) for N = 32
(equivalently 512-seconds) and for different values of n are

shown in Fig. 1. From these figures, we observe that value

of the mean function µ̂(n) is very close to 60Hz. We also

observe that the autocorrelation function is approximately

independent of n for k = 100. Similar plots are obtained

for different values of k. These results indicate that ENF

signal exhibits some characteristics approximating a WSS

process. More generally, if accounting for small variations in

the autocorrelation function for different values of n, ENF

signal can be approximated as a piecewise WSS in small

segments. Furthermore, the probability density function (pdf)

of f(n) follows a Gaussian distribution as shown in Fig. 2(a)

for a 25-hours long ENF signal recording from the power

supply. Based on these observations, we model the ENF signal

f(n) as a Gaussian process that is piecewise WSS with mean

value 60 Hz. To make it a zero-mean process, we subtract

the nominal value of 60 Hz from the ENF signal. In our

subsequent discussions, f(n) is assumed to be a zero-mean

process.

The resulting zero-mean f(n) in a ENF segment F(n) is

then modeled as the output of a linear filter whose transfer

function is given by A(z), and a zero-mean white noise pro-

cess v(n) is fed as an input to it. The value of filter coefficients
may be different for each segment of the ENF signal as f(n)
is assumed to be piecewise stationary. Since the model order

68



59.94 59.96 59.98 60 60.02 60.04 60.06
0

5

10

15

20

25

30

Frequency (in Hz)

p
d

f

 

 

Experimental data

Gaussian fitting

(a) pdf f(n)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
x 10

−4

Process order M

σ
v2
 o

f 
v
(n

)

(b) σ2
v
for different M

Fig. 2. Histogram of f(n) and power spectral density of v(n) for a 25-hours
long power-ENF recording.

of the ENF process is not known a priori, we estimate the

order as the value of M that will minimize the estimated value

of the power spectral density of the corresponding innovation

process v(n). The plot of the estimated σ2
v for different order

M is shown in Fig. 2(b). From this figure, we observe that

M = 1 achieves a low value of σ2
v , and the variance stays

approximately constant as we increase the order M . Based

on these observations, we model the ENF signal f(n) in a

segment F(n) as a simple first-order AR process as follows:

f(n) = a1f(n− 1) + v(n) (2)

Since f(n) is a piecewise WSS, the value of a1 may be

different for each segment. The auto-correlation matrix of a N-

point process F(n) is calculated as R = E[F(n)F(n)T ], with
(i, j)th entries of R denoted by r(i−j). The value of r(i−j)
will be different for each segment as it is dependent on a1
of each segment. Under this model, F(n) follows a Gaussian

distribution given by N (0,R). Based on this proposed model,

next we define a timestamp verification problem and formulate

it using a hypothesis testing framework.

III. TIMESTAMP VERIFICATION AS HYPOTHESIS TESTING

A hypothesis testing framework is widely used to model

identification and classification problems in statistical de-

tection. We use this framework to study the performance

of timestamp verification using ENF signal. In timestamp

verification, each query multimedia file Z is assumed to

contain an embedded timestamp in the metadata denoted by n,

representing the time-of-recording claimed in the file. We want

to verify the authenticity of this timestamp, i.e, to determine

if the recording actually took place at time n. We extract ENF

signal from query Z using a bandpass filter followed by an

instantaneous frequency estimation method, and denote it by

W = [w(0), w(1), . . . , w(N − 1)]T , where N is the length of

the ENF signal W extracted from the file.

A. Matching using ENF sequences

We start with a highly simplified model to help gain insights

on the ENF matching problem while retaining analytical

tractability. Let us denote an N-point reference ENF signal at

time instant n as F(n), which is stored in a database available

to the detector. This database serves as a reference for the

timestamp verification. Such ENF database can be built by

a continuous recording of the voltage signal from the power

mains supply, and extracting ENF signal using the instanta-

neous frequency estimation methods, as described in [2] [8].

Alternatively, the database can also be obtained directly from

the power distribution companies as they generally keep a

record of ENF signal [1].

As the sensitivity of different multimedia recording devices

may be different and there may be interfering signals in the

frequency band around the nominal ENF value, distortion may

be introduced in ENF signal embedded in query Z . Based

on such observations, W can be assumed to be a distorted

version of F(·) corresponding to the actual time-of-recording.

We model this distortion using an additive white Gaussian

noise vector C(n) = [c(n), c(n+1), . . . , c(n+N− 1)]T with

distribution N (0, σ2
cI), where I denotes a N × N identity

matrix.

Under the settings described above, we model the ENF

signal based timestamp verification as a binary hypothesis

testing problem. We define two hypotheses, H0 and H1, as

follows:

H0 : W = G(n) + C(n)

H1 : W = F(n) + C(n)

Under the null hypothesis, the ENF signal W is a sample

from G(n), which has the distribution of ENF database. We

model the conditional distribution of G(n) for a given a1 as

N (0,R), and G(n) is assumed to be uncorrelated with C(n).
Since, a1 also follows a distribution in a given long duration

ENF signal, H0 can be considered as a composite hypothesis

parameterized on a1. Under hypothesis H1, ENF signal W is

the distorted version of the actual ENF signal F(n) stored in

the database corresponding to timestamp n.

A correlation based detector is used to measure the similar-

ity between W and F(n) as follows:

ρ =
1

N

WT F(n)
√
σ2
w

√
σ2
f

(3)

where σ2
w and σ2

f are the variances of a component in W and

F(n), respectively. Since the distribution of W and F(n) are

Gaussian, ρ follows a Gaussian distribution. In practice, the

value of ρ is obtained by using estimated values of σ2
w and

σ2
f in the denominator of Eq. (3). The estimated values of

σ2
w and σ2

f is computed as σ̂2
w = 1

N

∑N−1
k=0 w(k)2 and σ̂2

f =
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1
N

∑N−1
k=0 f(n + k)2, respectively. Because of the estimates

are in themselves random variables as opposed to constants,

the distribution of ρ may deviate from a Gaussian distribution.

Such Transform techniques as a Fisher transformation [9] can

be applied on the sample correlation coefficient ρ to make the

resulting transformed distribution more Gaussian. In addition,

this correlation based detector is not optimal under the as-

sumed distributions for commonly used detection criteria, but

is used here for a simplified analysis. A generalized likelihood

ratio test [10] can be designed for optimal detection, but

the subsequent analysis becomes too complex, and will ne

considered in our future work.

Under the described framework, the detector decides the

authenticity of intrinsically embedded timestamp in the given

query Z by comparing the value of ρ with a pre-defined

constant τ :

δD(ρ) =

{
1 H1 is declared if ρ > τ ,

0 H0 is declared if ρ ≤ τ
(4)

The performance of the timestamp verification under our

model can be evaluated using the false alarm probability, Pf ,

and the detection probability, Pd, defined as:

Pf = Pr(δD = 1|H0) (5)

Pd = Pr(δD = 1|H1) (6)

Where Pr(·) denotes the probability of the given event. The

value of τ presents a trade-off between Pf and Pd. For a

practical system, the value of τ should be chosen such that

Pf is low and Pd is high.

The expression for Pf and Pd can be obtained based on the

following expressions for the detection statistics ρ:

ρ|H0, a1 ∼ N

(
0,

1

N
+A−B

)
∆
= N

(
µH0, σ

2
H0

)
(7)

ρ|H1 ∼ N


 1√

1 + 1
SNR

,
1

N

(
1

1 + SNR

)


∆
= N

(
µH1, σ

2
H1

)
, (8)

where A = 2SNR
1+SNR

N−1
N2

a2

1

1−a2

1

and B = 2SNR
1+SNR

a4

!
(1−(a2

1
)N−1)

N2(1−a2

1
)2

.

SNR = r(0)
σ2
c

represents a measure of signal-to-noise ratio of

ENF signal from multimedia. Detailed derivations of Eq. (7)

and Eq. (8) are skipped in this paper due to space limit. The

distribution of ρ|H0 can then be estimated numerically after

the distribution of a1 is obtained from the power-ENF data. A

plot of the distribution of a1 for N = 32 from our power data

collection is shown in Fig. 3. From this figure, we observe that

the AR coefficient value of the process f(n) has a high density
around 0.9. Smaller deviations around that value indicates that

process f(n) approximately behaves as a WSS, and can be

better modeled as a piecewise WSS process.

The plot of the pdf of ρ for N=32 and SNR = 14.6dB
is shown in Fig. 4(a). The chosen values of SNR is based

on the ENF signal extracted from our audio data and power

data collection. The distribution of a1 is computed directly

from the power-ENF data. From Fig. 4(a), we observe that

the distribution of ρ under H0 and H1 partially overlap and

this will cause errors in detection.
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Fig. 4. pdf of ρ and ρ′ under H0 and H1.

Under the detection statistics given by Eq. (7) and Eq. (8),

the expressions for Pf and Pd can be obtained analytically by

evaluating the following ezpressions:

Pf = Pr(ρ > τ |H0) (9)

Pd = Pr(ρ > τ |H1) (10)

B. Matching using Innovation Process

In Section III-A, we have formulated the problem of ENF

signal based timestamp verification as a binary hypothesis

testing problem. We have observed that the distribution of the

detection hypothesis ρ under H0 and H1 shows a significant

amount of overlap. A major contributor to this overlap is the

correlation within an ENF signal over time, as evident from the

autoregressive model of ENF signal described in Section II.

Such correlation may lead to local peaks in the value of ρ

at time shifts other than the true match and in turn a high

false alarm probability. To improve the detection performance,

we propose to use samples from the innovation process

V(n) = [v(n), v(n + 1), . . . , v(n + N − 1)]T for matching.
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Using ENF signal model from Section II, the process V(n) can
be obtained after decorrelating the ENF signal F(n) at time n

by filtering it through a filter H(z) = 1
A(z) = 1− a1z

−1. The

filter coefficient a1 can be estimated using the Yule-Walker

equations applied to the ENF data F(n) at time n. Since v(n)
is an i.i.d. sequence for an AR process, such a methodology

addresses the false alarm probability described above and thus

provide an improvement in the detection performance.

By passing W through the estimated filter H(z), we obtain

the corresponding query innovation process and denote it by

Wd = [wd(0), wd(1), . . . , wd(N − 1)]T . Under this setting,

for an embedded timestamp n in the given query Z , we use

Wd and V(n) for hypothesis testing. The two hypotheses now

become:

H0 : Wd = U(n) +D(n)

H1 : Wd = V(n) +D(n)

where D(n) = [d(n), d(n + 1), . . . , d(n + N − 1)]T is a

vector of zero-mean colored Gaussian noise process, with its

components given by d(n) = c(n)− a1c(n− 1), where a1 is

the AR coefficient for the corresponding segment. The power

of the noise process d(n) is denoted by σ2
d. Under the null

hypothesis, Wd is a sample from U(n). The distribution of

the innovation sequences from ENF database, U(n), can be

modeled as N (0, σ2
vI) using a similar analysis to the modeling

of G(n) in Section III-A. To measure the similarity between

Wd and V(n), we define a correlation based metric similar

to Eq. (3) as follows:

ρ′ =
1

N

Wd
T V(n)√

σ2
wd

√
σ2
v

(11)

where σ2
wd and σ2

v are the variances of components in Wd

and V(n), respectively. In practice, the value of ρ′ is obtained

by using estimated values of σ2
wd and σ2

v in the denominator

of Eq. (11). The estimated values of σ2
wd and σ2

v is computed

as σ̂2
wd = 1

N

∑N−1
k=0 w2

d(k) and σ̂2
v = 1

N

∑N−1
k=0 v2(n + k),

respectively. The covariance matrix of the process D(n) is

not diagonal due to colored noise. However, under sufficiently

high signal-to-noise ratio, the non-diagonal entries in the

covariance matrix of D(n) can be ignored to obtain a good

approximation of the density of ρ′, while keeping tractability

of the solution. Under this assumption, the distribution of the

detection statistics ρ′ under H0 and H1 can be approximated

as follows:

ρ′|H0 ∼ N

(
0,

1

N

)
(12)

ρ′|H1 ∼ N


 1

1 +
√

1
SNR′

,
1

N

(
1

1 + SNR′

)
 (13)

where SNR′ is defined as
σ2

v

σ2

d

. Note that the value of SNR′

is significantly lower than that of SNR, as filtering W using

the filter 1 − a1z
−1 leads to an increase in the noise power

σ2
d of the resulting signal Wd. As will be discussed in

Section IV, even under this reduced signal-to-noise ratio, the

detection performance of timestamp verification is improved

by matching using innovation sequences. The plot of the pdf

of ρ′ under these hypotheses for the same parameters as used

in Section III-A is shown in Fig. 4(b). Comparing this plot

with Fig. 4(a), we observe that the overlap between the pdf

of H0 and H1 is reduced, and as a result, the proposed

matching using innovation process will have a better detection

performance than matching ENF sequences directly.

The detector determines the authenticity of the embedded

timestamp in a query file Z using the same decision rule in

Eq. (4). The expressions for Pf and Pd can be calculated in

a similar way.

IV. RESULTS AND DISCUSSIONS

A. Experimental Setup

In this section, we describe the experiments conducted on

audio signal to measure the detection performance of times-

tamp verification under the proposed framework. We record a

25-hour long audio signal using a microphone at a sampling

rate of 1KHz. We divide the recorded signal into segments

of 256-seconds and 512-seconds. The beginning time index is

stored in metadata as the time-of-recording for each segment.

Instantaneous frequency is estimated at every 16-seconds of

recording data using the weighted energy spectrogram method

described in [2]. ENF database is recorded in parallel from

the power supply, and the same weighted energy spectrogram

mechanism is used to estimate the ENF signal from this

recording. An estimate of the signal-to-noise ratio SNR for

audio-ENF signal is obtained by assuming the power-ENF

signal as clean signal, and subtracting the audio-enf signal

from the power signal to get an estimate of the noise power.

The value of SNR from this dataset is obtained to be 14.6dB.
Each audio file is given to the detector with each possible

timestamp m 6= n for false matching, and m = n for correct

matching. This setting gives us 350 and 175 correct matching

samples for segment lengths of 256-seconds and 512-seconds,

respectively.

B. Results

For our audio experimental data, we use an AR(1) model

to estimate the filter parameter a1 of A(z) for the power-

ENF signal F(n) at time n using the Yule-Walker equations.

The plot of the estimated pdf of a1 obtained from different

segments of power-ENF signal for query length 512-second

is shown in Fig. 3. To obtain V(n) and Wd, we filter the

power-ENF signal F(n) and the query audio-ENF signal W

by passing them through H(z) = 1 − a1z
−1, where a1 is

the AR coefficient obtained from F(n). Using the settings

described in Section IV-A, we conduct a timestamp veri-

fication operation by a direct ENF sequence matching and

decorrelated innovation sequence matching, respectively. The

ROC curve for the detectors described in Section III-A and

Section III-B, when 256-second and 512-second long query

is used for timestamp verification are shown in Fig. 5(a) and

Fig. 5(b), respectively. From these figure, we observe that the

performance of the detector on audio data is comparable to the

71



0 0.1 0.2 0.3 0.4 0.5
0.8

0.85

0.9

0.95

1

P
f

P
d

 

 

Theory (Innovations matching)

Audio Data (Innovations matching)

Audio Data (ENF matching)

Theory (ENF matching)

(a) 256-second segments

0 0.1 0.2 0.3 0.4 0.5
0.8

0.85

0.9

0.95

1

P
f

P
d

 

 

Theory (Innovations matching)

Audio Data (Innovation matching)

Audio Data (ENF matching)

Theory (ENF matching)

(b) 512-second segments

Fig. 5. ROC characteristics of the correlation detector for ENF matching v.s. innovations matching at two query segment length (best viewed in colors).

performance by our analytical model. We also observe that

using the innovation sequences for matching is significantly

better than using the ENF sequences directly. For example, the

probability of detection increases from 90% to 97% for a false

alarm rate of 5% for 256-second segments, when innovation

sequences are used for matching in our experiments. Similarly

for 512-second segments, the probability of detection increases

from 90% to 98% for a false alarm rate of 1% when innovation

sequences are used for matching. We also observe a significant

improvement in the detection performance when the query

clip duration is increased from 256-seconds to 512-seconds for

both the cases when direct ENF sequence and the innovation

sequences are used for matching.

In addition, from Fig. 5(a) and Fig. 5(b), we observe a

slight mismatch between the performance of the analytical

model and the experimental results. Such mismatch may be

due to a simplified first order AR model and a simpler binary

hypothesis detection framework used in this paper. In general,

correlation between query ENF sequence and ENF database

is also high for time index near the actual time-of-recording.

A composite hypothesis taking such correlated structures

near the time index corresponding to time-of-recording into

account would be a more desirable choice to model H0. In

our ongoing work, we are exploring such a framework on

composite hypothesis to get a better prediction of the detection

performance. The current binary hypothesis framework can be

considered as a first-step exploration on the problem of ENF

modeling for timestamp verification. Although the simplified

analytical model presented in this paper has a gap with

the realistic characteristics as observed from our experiments

especially for the case when ENF sequences are directly used

for matching, it shows that an AR process based decorrelation

provides improvement in the detection performance, and this

improvement is consistently observed when applied to audio

data. The performance of the proposed model match more

closely with the audio experimental data as segment length

increases.

V. CONCLUSION

In this paper, we proposed a simple autoregressive analyt-

ical model for the electrical network frequency signal. The

proposed model was used to study the problem of timestamp

verification under a hypothesis detection framework. The

trends in the receiver operating characteristics of the analytical

model for different segment size used for matching were

similar to that obtained from the experimental data. Based on

the proposed model, a decorrelation based innovation process

matching approach was adopted to improve the performance

of the timestamp verification under the proposed framework.

The experimental results with audio data demonstrated an

improvement in the detection performance from 90% to 98%

for a false alarm probability of 1% for 512-second long query

segment when decorrelated innovation sequences are used for

matching as compared with direct matching of ENF sequences.

REFERENCES

[1] C. Grigoras, “Applications of ENF criterion in forensics: Audio,
video, computer and telecommunication analysis,” Forensic Science

International, vol. 167, no. 2-3, pp. 136 – 145, Apr. 2007.
[2] R. Garg, A. L. Varna, and M. Wu, “‘Seeing’ ENF: natural time stamp

for digital video via optical sensing and signal processing,” in Proc. of

the 19th ACM Intl. conf. on Multimedia, 2011, pp. 23–32.
[3] R. W. Sanders, “Digital authenticity using the electric network fre-

quency,” in 33rd AES Intl. Conf. on Audio Forensics, Theory and
Practice, June 2008.

[4] M. Bollen and I. Gu, Signal Processing of Power Quality Disturbances,
Wiley-IEEE Press, 2006.

[5] M. Huijbregtse and Z. Geradts, “Using the ENF criterion for determining
the time of recording of short digital audio recordings,” in Proc. of the

3rd Intl. Workshop on Computational Forensics, Aug. 2009, pp. 116–
124.

[6] R. Garg W. H. Chuang and M. Wu, “How secure are power network
signature based time stamps?,” To appear, ACM Conf. on Computer and

Communication Security, Oct. 2012.
[7] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Inc., 2001.
[8] A. Hajj-Ahmad, R. Garg, and M. Wu, “Instantaneous frequency

estimation and localization for enf signals,” To appear, 4th APSIPA

Annual Summit and Conference, Dec. 2012.
[9] R.A. Fisher, “Frequency distribution of the values of the correlation

coefficient in samples of an indefinitely large population,” Biometrika,
vol. 10, no. 4, pp. 507 – 521, 1925.

[10] H. V. Poor, An Introduction to Signal Detection and Estimation (2nd

edition), Springer, 1994.

72


