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ABSTRACT

Multiple videos capturing the same scene from possibly dif-
ferent viewing angles may be synthesized for novel immer-
sive experience. Synchronization is an important task for
such applications involving multiple pieces of audio-visual
data. In this work, we exploit the electric network fre-
quency (ENF) signal inherently embedded in the soundtrack
and/or image sequence of video to temporally align video
recordings. ENF is the supply frequency of power distribu-
tion networks in a power grid. Its value fluctuates slightly
from its nominal value of 50 Hz or 60 Hz, and the fluctu-
ation trends stay consistent within the same grid. Audio
and video recordings that are created in areas of electric ac-
tivities may capture the ENF signal due to electromagnetic
interferences and other physical phenomena. We propose
to synchronize video recordings by aligning the embedded
ENF signals. Without major constraints on viewing angle
and camera calibration as many existing methods impose,
the proposed approach emerges as a new synchronization
modality.
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1. INTRODUCTION

When an event is recorded simultaneously by multiple in-
dependent video cameras and possibly from a variety of an-
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gles, fusing the information in these videos may provide a
better presentation and novel immersive experience of the
event than each recording alone. Using 3D reconstruction
techniques, a dynamic scene may be reconstructed from mul-
tiple video streams that allows people to choose from dif-
ferent viewing angles of a scene. Several videos of various
perspective can be “stitched” together to achieve wider field
of view via video panorama [1]. A video sequence of high
space-time resolution can be obtained by combining infor-
mation from multiple low-resolution video sequences [2]. To
facilitate these and other tasks involving multiple pieces of
video data, the individual video sequences often need to be
synchronized before synthesis. Video synchronization there-
fore becomes an important problem, and the solution to it
can enable and enhance existing and potentially new immer-
sive media applications.

In professional video productions such as sports TV broad-
casting, the recording cameras may be synchronized based
on coordinated hardware and communication protocols to
provide synchronized timestamps and ensure accurate tem-
poral alignment. For distributed and ad-hoc settings involv-
ing consumer-level devices, different cameras’ clocks are not
easily synchronized to the frame level. In absence of proac-
tive synchronization mechanisms, the current solutions have
to rely primarily on visual content and/or sound content [3,
4,5, 6, 7], and may not always work well. For example, it is
difficult to synchronize video sequences using visual features
when they do not share a sufficient amount of common view
of the scene, or the viewing angles are significantly different
and the cameras are not calibrated beforehand.

In this paper, we propose a new modality for video syn-
chronization by exploiting the electric network frequency
(ENF) signal inherently embedded in video recordings. ENF
is the supply frequency of power distribution networks in a
power grid. The nominal value of the ENF is usually 60Hz
(in North America) or 50Hz (in most other parts of the
world). The instantaneous value of the ENF typically fluctu-
ates slightly around its nominal value as a result of the inter-
action between power consumption variations and the con-
trol mechanisms of the power grids. The main trends in the
fluctuations of ENF are very similar within the same power
grid, even for distant locations [8]. The sequence of values of
instantaneous ENF over time is regarded as the ENF signal.
The ENF signal can be extracted from a power signal mea-
sured at a power outlet through a step-down transformer and
a voltage divider circuit. Audio recordings created using de-



vices plugged into the power mains or battery-powered near
electrical devices can capture the ENF signal due to electro-
magnetic interferences or acoustic vibrations such as electric
humming [8]. More recently, it is found that video cameras
are also capable of capturing ENF signals due to the flicker-
ing in indoor lightings caused by changes in supply voltage
[9]. Several forensic applications have been proposed based
on the analysis of ENF signals [10, 11, 12].

Viewed as a continuous random process over time, the
ENF signal embedded in audio and video signals can be used
as a timing fingerprint that is unique at any specific time
instance. We propose to match the ENF signals extracted
from video recordings to achieve temporal alignment. ENF
signals may be extracted from the soundtracks of the video
recordings, as well from the image sequences if the video
captures the subtle flickering of lightings. Extracting the
weak ENF signal from image sequences is a challenging task.
The temporal sampling rate of visual recordings is generally
too low to directly estimate the ENF signal that may appear
at harmonics of 50 or 60 Hz. The ENF traces in video signals
are relatively weak, and may be easily distorted by object
and camera motions. Techniques need to be developed to
address these challenges.

As the proposed approach does not rely on the perceptual
audio and visual information of the recordings, it is funda-
mentally different from and complementary to conventional
methods. One of the main advantages of the proposed ap-
proach is that it imposes no major constraints on the viewing
angles, camera calibrations and camera motions. This prop-
erty provides it a strong potential to address such difficult
scenarios that are intractable by existing methods. The pre-
requisite for this approach to work is that the ENF traces
in the audio/video recordings are strong enough for reliable
estimation of the ENF signal.

2. VIDEO SYNCHRONIZATION USING ENF

SIGNALS FROM SOUNDTRACKS

We start out by synchronizing videos based on extracting
and aligning the ENF signals from soundtracks.

2.1 Extracting ENF from Audio Recordings

A general and easily implementable approach to estimat-
ing ENF signal from a source signal such as audio is the
short-time Fourier transform (STFT), which is a popular
non-parametric tool for frequency analysis of time-varying
signals. It divides a signal into possibly overlapping frames
of small durations. Within every frame, the signal can be
regarded as wide-sense stationary, and each of the frames
undergoes Fourier analysis respectively. For ENF estima-
tion, we apply STFT to a source signal that contains ENF
traces, and find the peak frequency within a certain range
near the nominal value or the harmonics in each frame.

To facilitate evaluation, the ground-truth ENF signal can
be obtained from power outlet measurements using a step-
down transformer and a voltage divider circuit. Fig. 1 shows
an example of ENF extraction from audio signal. In this ex-
ample, an audio recording and a power measurement record-
ing were made simultaneously in the US where the nominal
value of ENF is 60 Hz. The ENF signal can be extracted
from around any harmonics of the nominal value of ENF,
as long as the ENF traces are strong enough. Here, we ex-
amine the second harmonic for the audio recording and the
base frequency for the power recording. As can be seen from
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Fig. 1 (c) and (d), the ENF signals estimated from the audio
recording exhibit very similar variation trends to the ground-
truth ENF signal from the power outlet measurements.
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Figure 1: Spectrograms and ENF estimates from audio and

power signals recorded at the same time.

2.2 Synchronizing Videos with ENF From
Soundtracks

Given two video clips to be synchronized, the ENF signals
are first estimated from both soundtracks. We then calcu-
late the normalized cross-correlation coefficient (NCC) of
the ENF signals as a function of the lag between them. The
lag corresponding to the largest value of NCC is chosen as
the estimated time shift between the two video recordings.

To demonstrate experimentally the effectiveness of the
proposed approach, we made two video recordings of people
playing racquetball in a gym with a Canon PowerShot SX230
HS camera and a Canon PowerShot A2300 camera, respec-
tively. The cameras shot the racquetball court from different
viewing angles. Both recordings are about 10 minutes long,
and one of them starts approximately 20 seconds earlier than
the other. The ENF signals are estimated from the sound-
tracks of the video clips, and their NCC is calculated with
different values of lags between them. In Fig. 2 (a), we plot
the NCC as a function of the lag and observe a clear peak
at 20.52 seconds. We then align the video clips by shifting
them relatively by 20.52 seconds. The ENF signals after
alignment, along with the reference ENF measured from the
power outlet, are shown in Fig. 2 (b). Both the ENF sig-
nals extracted from the videos exhibit variation trends that
are consistent with those of the reference ENF signal. A
few sample pairs of images from the video sequences after
alignment are shown in Fig. 2 (c). The images in the same
row are from the same video stream, while the images in
the same column correspond to the same time instance. By
examining the movement of the girl in the images, we can
see that the two video sequences are well synchronized.

Accuracy Evaluation Experiments have been conducted
to evaluate the synchronization accuracy. We take multiple
video recordings simultaneously with two cameras at vari-
ous locations, including offices, hallways, recreation centers
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Figure 2: Example of video synchronization by aligning the

ENF signals from video soundtracks.

and lobbies. These videos are divided into clips of 10 min-
utes long and each clip is treated as a test sample. The
ground truth of the lag between the recordings are obtained
by manually comparing the video frames. Using a total of
nearly 7 hours’ video organized in 20 pairs of test clips, we
carry out synchronization using the proposed method, and
the average absolute synchronization error is 0.12 second.

3. EXTRACTING ENF SIGNALS FROM VI-
SUAL RECORDINGS

Visual recordings are also capable of capturing ENF traces.
Indoor lightings often vary the light intensity in accordance
with the AC voltage supplied, resulting in subtle flickering
in the lights. For fluorescent lights and incandescent bulbs,
the frequency of the flickering is usually twice that of the
ENF, as the light intensity is proportional to the amplitude
of the instantaneous input voltage, regardless of its polar-
ity. Although the flickering may be invisible to human eyes,
cameras can often capture it in video recordings. In [9], the
authors take the mean of the pixel values in every image of
a video sequence as source signal, and then use spectrogram
analysis to estimate the embedded ENF signal. A major
challenge of that scheme is the aliasing effect. By taking
one sample from every frame, the ENF signal that appears
at harmonics of 50 or 60 Hz is essentially sampled tempo-
rally at the frame rate of the video recordings. Current
consumer digital cameras usually adopt a frame rate that
is around or lower than 30 fps. The ENF signals therefore
suffer from severe aliasing effect due to insufficient sampling
speed. To overcome this challenge, the rolling shutter has
been recently exploited as an attempt to increase the actual
sampling rate [13].

3.1 Rolling Shutter of CMOS Sensors

Rolling shutters are commonly adopted for complemen-
tary metal-oxide semiconductor (CMOS) camera sensors.
Unlike global shutters often employed in charge-coupled de-
vice (CCD) sensors that record the entire frame from a snap-
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shot of a single point in time, a camera with a rolling shutter
scans the vertical or horizontal lines of each frame in a se-
quential manner. As a result, different lines in the same
frame are exposed at slightly different times. In addition,
some rolling shutter may adopt a possible idle period be-
tween finishing the scan of one frame and proceeding to the
next frame. Since the pixels in different rows or columns are
exposed at different times but are displayed simultaneously
during playback, the rolling shutter may cause such spatial
distortions as skew, smear, and other visual artifacts.

The sequential read-out mechanism of rolling shutter has
been conventionally considered detrimental to image/video
quality due to its accompanying artifacts. However, recent
works have shown that the rolling shutter can be exploited
with computer vision and computational photography tech-
niques [14, 15]. The authors in [13] propose to take advan-
tage of the rolling shutter to solve the problem of insufficient
sampling rate for estimating the ENF signal from the image
sequence of video recordings. By treating each line of the
frame as a sample point, the sampling rate can be much
higher than the frame rate. The work in [13] on rolling
shutters is relatively preliminary as it was limited to videos
of static scenes. In this paper, we carry out a further study
along this direction, and develop techniques to handle videos
with motions.

Without loss of generality, we assume the rolling shut-
ter scans the frame row-by-row. Consider a video signal
s(r,e,n), where 1 <r < R,1<c¢<Cand1l<n<N de-
note the row index, column index and frame index, respec-
tively. The video signal contains mainly two components:
one is the visual component v corresponding to the visual
scene; and the other is the ENF component e:

(1)

From Eq. (1), we see that the signal-to-noise-ratio (SNR)
of e in s may be low in the presence of the visual component
v. For fixed spatial indices r and ¢, the visual component
v(r,c,n) as a function of n is in general a low-pass signal.
In order to suppress the effect of v and extract the ENF
component e, we apply an appropriate high-pass filtering to
the video signal s.

3.2 Static Videos

We first consider the case where the scene in the video is
static so that the visual signals of every frame in the video
are identical, i.e., v(r,¢,n) = v(r, ¢). Under this assumption,
Eq. (1) is reduced to

s(rye,n) =v(r,e,n) + e(r,c,n).

(2)

We can apply a high-pass filter to s by subtracting from it
its mean value across all frames:

s(r,e,n) = v(r,c) +e(r,c,n).

5(r,e,n) = s(r,e,n) — n(r,c)

N
= S(T7 & 7’L) - % Z S(Tv & m)

For any given r and ¢, e(r, ¢, n) as a functionof n = 1,2, ..., N
is essentially the sinusoidal ENF signal sampled at the frame
rate of the video recording. Since the frequency of the ENF
signal is changing over time, e(r,c,n) for n = 1,2,.... N



tends to have different phases and cancel out. So for a suf-
ficiently large N, the average of these samples is close to 0,
ie.

(4)

N
_ 1
en(r,c) = i Z e(r,c,m) ~ 0.
m=1

This leads to

3(r,e,n) ~e(r,c,n). (5)
After the high-pass filtering, the SNR of the ENF signal in
§ is much higher than that in the original video signal s. We
then use the spatial average of each row in §(r,c,n) as the
source signal to estimate the ENF signal:

C
R(r,n) = % S 5(r,em). ©6)

R(r,n) is referred to as the row signal hereafter.

We have conducted experiments using a Canon PowerShot
SX230 HS camera that is equipped with a rolling shutter.
Fig. 3 shows an example of ENF estimation from a static
video recording. The test video here is a recording of a white
wall under fluorescent lightings, and the camera was fixed on
a tripod during the recording. Fig. 3 (a) shows a snapshot
of the test video. We calculated the row signal according to
Eq. (6), and then vectorized it by concatenating its entries
frame after frame to form the source signal for ENF estima-
tion. Fig. 3 (b) shows a segment of the source signal. We
can see that the source signal exhibits sinusoidal waveforms
except for some periodic phase shifts. These phase shifts ex-
ist because of the idle period of the rolling shutter between
exposing the last row of one frame and starting the first row
of the next frame. During the idle period, no recording is
conducted, and a phase jump of the source signal may thus
occur on every frame border (every 240 samples in this ex-
periment). In the spectrogram of the source signal in Fig. 3
(c), we observe that due to the phase discontinuities, the
ENF signal is shifted by multiples of the frame rate (29.97
Hz in this experiment). We estimate the ENF signal from
around 60 Hz as we see from the spectrogram that the SNR
of the ENF signal is the highest in this frequency range. The
ENF signal estimated from the video signal together with its
simultaneous reference ENF signal extracted from the power
measurements are shown in Fig. 3 (d). The signals are prop-
erly shifted to facilitate comparison. The variation patterns
in the ENF signal from the test video match well with those
in the reference ENF signal.

3.3 Videos with Object Motion

It is more challenging to extract ENF signals from video
recordings of scenes with moving objects. In such a scenario,
Eq. (2) does not hold anymore, and the method for high-pass
filtering in the previous subsection would no longer work.

If the scene in the video contains a background that is
static, we can use these static regions to estimate the ENF
signal. Following the notations of last section, given two
image frames s(r,c,n) and s(r,c,m), we are interested in
finding the regions that are not affected by object motion
in either of the frames. The mutually motion-free regions
between s(r, ¢,n) and s(r, ¢, m) are represented by a binary
matrix M™™(r,c), defined as

1 if frame n and frame m are both static
at pixel (r,c)
0  otherwise

M™"(r,c) =
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A simple way to identify the motion-free regions is thresh-
olding on the pixel-wise differences of the pixel intensity be-
tween the two images.

With a similar strategy to what was presented in Sec. 3.2,
we apply a high-pass filter to the video signal by subtracting
from it a smoothened version of the original signal. For
an image frame s from the video sequence, we search for
its mutual motion-free regions against all the other frames.
The pixel values of the frames in their respective motion-free
regions can be averaged to form a smoothened version of s,
which is then subtracted from s:

§(T’, ¢, TL) = S(’f’, ¢, n)i
1

2 M (1, €) > s(riem) - M™(r.0) (7)

m#n

The row signal is obtained by taking the row average of
§, from which the ENF signal can be estimated. We have
conducted an experiment with a video that records people
walk in the hallway in an office building. The video was
made with similar settings to the experiments in Sec. 3.2.
We used the proposed scheme to extract the ENF signal
from this test video. The reference ENF signal was also
estimated from a simultaneously recorded power signal. We
can see from Fig. 4 that the variation trends of the ENF
signal estimated from the test video are consistent with those
of the reference ENF signal.

3.4 Compensating Brightness Changes

Many cameras are equipped with an automatic brightness
control mechanism that would adjust camera’s sensitivity
to light in response to the illumination conditions so that
the overall brightness of the acquired image remains visu-
ally pleasing. As an example of such a phenomenon, two
images from a video sequence are shown in Fig. 5. As the
person in the second image is closer to the camera, the back-
ground wall appears brighter than in the first image. Such
brightness changes introduce challenges to the estimation of
the ENF signal using the techniques described in previous
subsections.

1000
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matches well with the reference ENF signal. The signals are

properly shifted to facilitate comparison.

To investigate the mitigation of the negative effect due
to brightness change, we have created the following record-
ing: during the first 4 minutes, a person walked around in a
hallway relatively far from the camera so that the camera’s
automatic brightness adjustment was not triggered; after 4
minutes, the person moved closer to the camera, and such
brightness changes occurred as shown in Fig. 5. The ENF
signal is extracted from this test video using the techniques
discussed in previous subsections without addressing the
brightness changes. In Fig. 6, we see that the estimated ENF
signal from the test video becomes distorted after 4 minutes
into the recording as a result of the brightness changes in
the image sequence.

1

Figure 5: Two image frames from a test video recording

illustrating camera’s automatic brightness control.

We have examined the relationship of the pixel values in
different images of the same scene. For two images, we ex-
amine the regions in which both of the images are static.
We find that the brightness change can be well modeled by
a linear transform. Given two frames s(r, ¢, n) and s(r, ¢, m),
we have

~s(rye,m) + ™™,

(8)

For a frame s(r, c,n), the pixel values in the static back-
ground regions are used to estimate the parameters a™™
and b™". For brightness change compensation, we apply
Eq. (8) to each frame s(r,c,m). Eq. (3) then becomes

s(r,e,n) =a™™

. 1
(r,e,n) =s(r,e,n) — =
( ) =s( ) S M o)
Z (a"’m -s(r,e,m) + b"’m) MM (rye) (9)
m#n

This compensation scheme was applied to the test video,
and the result of ENF estimation is shown in Fig. 6. With
our proposed method, the ENF signal estimated from the
test video now exhibits consistent variations with the refer-
ence ENF signal.
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3.5 Compensating Camera Motion

In the previous discussions, we have assumed that the
camera is fixed during recording so that the pixels in differ-
ent image frames are spatially aligned. In practice, people
may hold the camera by hand to make a video recording,
and camera motion compensation is needed.

For two image frames s(r,¢,n) and s(r,c,m), we denote
by (6;°™,02°™) the pixel-wise shift between them due to the
camera motion:

s(rye,n) = s(r+46,"",c+ 62", m). (10)

To compensate for the camera motion, we need to shift the
pixels in two frames relatively by (§;°'™,d2'™) so that they
are spatially aligned. The registered frames can be processed
as described in the previous subsections. Considering the
camera motion compensation, Eq. (3) becomes

N
Sryeom) = s(re,n) = S s+ 0P e 00 m), (1)

m=1

and the ENF signal can then be estimated from 3§(r, ¢, n).
Optical flow methods can be used to estimate the pixel-
wise displacement between image frames. These methods
calculate the motion field (V;, V) between two frames s(r, ¢, n)
and s(r, ¢, n+d,) based on the optical flow equation 22V, +
%VC + % = 0, and certain additional conditions and con-
straints for regularization. In this work, we have used the

implementation of the optical flow estimation developed by [16].

An experiment was conducted to verify the proposed cam-
era motion compensation scheme. We used the Canon Pow-
erShot SX230 HS camera to make a video recording of a hall-
way. The camera was held by hand during the recording, and
we deliberately shook the camera to create noticeable mo-
tion in the video recording. The ENF signal estimated from
the test video with camera motion compensation matches
with the groundtruth ENF signal, as shown in Fig. 7.

4. VIDEO SYNCHRONIZATION USING ENF
SIGNALS FROM IMAGE SEQUENCES

In Sec. 2, we have demonstrated video synchronization by
aligning the ENF signals extracted from the soundtracks of
video clips. In certain scenarios such as some surveillance
recordings, video recordings may have been muted or the
soundtrack may have been edited, and thus have no reliable
audio available. As an alternative, we may extract the ENF
signal from the image sequence of the visual track using the
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techniques described in Sec. 3. In this section, we present
experimental results of this approach.

We used two Canon PowerShot SX230 HS cameras that
are equipped with CMOS sensor and rolling shutter to video
tape a hallway illuminated by an indoor light in an office
building. The cameras were placed to capture the hallway
from different view angles. A person walked through the
hallway back and forth, and his movements were captured
by both cameras.

We apply the methods discussed in Sec. 3 to estimate the
ENF signals from the image sequences of both the video
recordings. The NCC of the estimated ENF signals as a
function of the lags between them is plotted in Fig. 8 (a),
from which we find a peak NCC value of 0.96 at 60.72 sec-
onds. The ENF signals after alignment are shown in Fig.
8 (b), and we see that the variation patterns of the ENF
signals match well with each other. In Fig. 8 (¢) we show
several image frames from the synchronized video record-
ings. For comparison, we manually aligned the two videos
by comparing the image frames and the soundtracks in both
video clips, and found the lag to be 60.80 seconds, which is
very close to the value obtained by the proposed approach.
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1 ——ENF signal estil from video 2
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-200 =100 0 100

Lag (seconds) 100
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Figure 8: Example of video synchronization by aligning the
ENF signals from image sequences.
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S. CONCLUSIONS

We have exploited the ENF signal inherently embedded
in the soundtrack and image sequence of videos as a timing
fingerprint to temporally align multiple video recordings. A
critical step of the proposed approach is the estimation of
the ENF signal from audio-visual data. Extraction of the
ENF signal from an image sequence is particularly challeng-
ing, and to the best of our knowledge, few research attempts
have been made to adequately address it. We have pro-
posed several techniques to effectively overcome the difficul-
ties that one may face when extracting the ENF signal from
image sequences. Through our experiments, we have demon-
strated that video recordings can be accurately synchronized
by aligning the inherently embedded ENF signals.
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