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ABSTRACT

The electric network frequency (ENF) signal can be embedded in

multimedia recordings created in areas of electrical activities. Re-

cent work has used the ENF signal for such applications as time

stamp authentication and forgery detection. It is more challenging to

extract ENF signals from video recordings than from audio record-

ings because of the low temporal sampling rate or frame rate of video

cameras. The rolling shutter of CMOS image sensor can be exploited

as it exposes a frame line by line, and the effective ENF sampling

rate by treating each line as a signal sample can be increased. This

scheme was shown to work well with static videos. This paper con-

ducts a further study on the exploitation of the rolling shutter for

extracting ENF traces from videos. The rolling shutter mechanism

is modeled and analyzed using multirate signal processing theory.

Challenging cases of videos with motions are examined, and solu-

tions to extracting ENF from them are explored.

Index Terms— ENF, rolling shutter, video, filter bank

1. INTRODUCTION

Electric Network Frequency (ENF) based analysis has emerged in

recent years as a promising tool for such multimedia forensic ap-

plications as time stamp authentication and forgery detection. ENF

is the frequency of the alternating current in an electric power grid.

The nominal value of the ENF is 60Hz (in North America) or 50Hz

(in most other parts of the world). The actual value of the ENF fluc-

tuates slightly around its nominal value over time as a result of the

interaction between power load and generation, and the main trends

of these fluctuations are consistent within the same power grid. The

changing values of the ENF over time are regarded as an ENF signal.

One can extract the ENF signal from measurements at a power outlet

using a step-down transformer and a voltage divider circuit.

Interestingly, audio recordings created using devices plugged

into the power mains or located near power sources can pick up the

ENF signals due to electromagnetic interference or acoustic vibra-

tions [1]. Several forensic applications have been proposed based on

the analysis of the ENF traces in audio recordings. In [1, 2], the ENF

signal is used as a natural time stamp to authenticate audio record-

ings. In [3], the authors propose to detect the region of tampering

by examining the phase continuity of the ENF signal. It is shown in

[4, 5, 6] that the ENF signal can also reveal information about the

locations and regions in which certain recordings are made. Appli-

cations of ENF analysis beyond forensics have also been proposed

[7].

Most previous work related to the analysis of ENF signals is

built on extracting ENF traces from audio recordings [1, 2, 3, 8].

Recently, it has been found that indoor lightings such as the flu-

orescent lights and incandescent bulbs vary their light intensity in

accordance with the AC voltage supplied, which varies according

Fig. 1. The spectrogram of a video recording shooting a white wall

under under fluorescent lightings. Figure is best viewed in color.

to the AC supply frequency [9]. As a result, it is possible for cam-

eras to capture the light intensity variation that can be used to extract

the ENF signal. In [9], the authors took the mean of the pixel val-

ues in every frame of video recordings that capture indoor lightings,

and then used spectrogram analysis to estimate the embedded ENF

signal. One major challenge of this scheme is the aliasing effect.

Most of the consumer digital cameras adopt a frame rate of around

30 fps, while the ENF signal appears at harmonics of 50 or 60 Hz.

Therefore the ENF signal suffers from severe aliasing effect induced

by insufficient sampling speed. In the US, the nominal value of the

ENF is 60 Hz. If the frame rate is exactly 30 Hz, the ENF signal

will be shifted to 0 Hz, i.e., the DC frequency. As a result, it is very

difficult to estimate the ENF signal due to low signal-to-noise ratio.

Figure 1 shows the spectrogram calculated from the mean values of

the frames of a video shooting a white wall under fluorescent light-

ings. We can see the ENF signal overlaps with the DC components

and is difficult to extract.

In our previous work, we have proposed to take advantage of the

rolling shutter to address the problem of insufficient sampling rate

[10]. The rolling shutters are commonly adopted for the comple-

mentary metal-oxide semiconductor (CMOS) camera sensors. Un-

like cameras with global shutters that record an entire frame from

a snapshot of a single point in time, a camera with a rolling shutter

scans the vertical or horizontal lines of each frame in a sequential

manner, so that different lines in the same frame are exposed at dif-

ferent times. If we treat each line of the frame as a sample, the tem-

poral sampling rate can be much higher than the frame rate, which

would facilitate the estimation of the ENF signal.

In this work, we carry out a further study on the exploitation

of the rolling shutter for extracting ENF traces from video record-

ings. We model and analyze the rolling shutter mechanism with a
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Fig. 2. Timing of rolling shutter sampling: the rows of a frame are

sequentially exposed, followed by an idle period before proceeding

to the next frame.

filter bank using multirate signal processing theory. We then extend

the scope of extracting ENF traces from videos of still scenes to

those containing motions, which is a challenging problem and has

never been formally attempted. Several methods are developed and

promising results are observed.

2. THE ROLLING SHUTTER

With a rolling shutter, each frame is recorded by scanning across the

frame either vertically or horizontally line by line, instead of captur-

ing the whole frame at a single point in time as in the case of a global

shutter. Figure 2 illustrates the timing for the image acquisition of

rolling shutters, assuming the scanning of a frame is done row-by-

row. Each row of the frame is sequentially exposed to light, fol-

lowed by a possible idle period before proceeding to the next frame.

Since pixels in different rows are exposed at different times but are

displayed simultaneously during playback, the rolling shutter may

cause such distortions as skew, smear, and other image artifacts, es-

pecially with fast-moving objects and rapid flashes of light [11].

The sequential read-out mechanism of rolling shutter has been

traditionally considered detrimental to image/video quality due to

its accompanying artifacts. However, recent work has shown that

the rolling shutter can be exploited with computer vision and com-

putational photography techniques [12, 13]. Our previous work [10]

has exploited the rolling shutter to extract ENF traces from videos

of static scenes. In this paper, we investigate the more challenging

cases of videos containing motions.

A Filter Bank Model

For an image captured by a rolling shutter, we can treat the spatial

mean of every row as a temporal sample since all the pixels in a sin-

gle row are exposed at the same time instance. As there is a between-

frame idle period during which no rows are exposed, in terms of

capturing the ENF signal over time we are equivalently abandoning

some samples that would have been generated in the idle period. The

time domain illustration of this model is shown in Figure 3 (a). Here,

we assume that the shutter is able to produce M samples at its full

capacity, and only L samples among them are retained while the rest

are discarded, where L ≤ M . We denote the input and output signal

as x(n) and y(n), respectively.

To facilitate frequency domain analysis, we use a L-branch filter

bank [14] to model the relationship between the input signal x(n)
and the output signal y(n), as shown in Figure 3 (b). In each branch

of the filter bank, the input goes through an M-fold down-sampler

… … … … … 

… … … 

L L

M 

L L

M 

X(n) 

y(n) 

(a)

   M         L   

   M         L   

  

. 

. 

. 

   M         L   

  

   M         L   

  

. 

. 

. 

. 

. 

. 

x(n) y(n) 

.

L branches 

(b)

Fig. 3. (a) Time domain illustration of the rolling shutter sample

acquisition; (b) an equivalent filter bank model (L ≤ M ).

followed by an L-fold up-sampler, with appropriate delays at both

the beginning and the end of the branch.

The DTFT of the signal coming out of the lth branch can be

analyzed according to multi-rate signal processing theory [14]:

Yl(ω) =
1

M

(

M−1
∑

m=0

X(
ωL+ 2πm

M
)ej

ωL+2πm

M
l

)

e−jωl. (1)

So the DTFI of the combined final output Y (ω) is given by:

Y (ω) =

L−1
∑

l=0

Yl(ω)

=

L−1
∑

l=0

1

M

(

M−1
∑

m=0

X(
ωL+ 2πm

M
)ej

ωL+2πm

M
l

)

e−jωl

=

M−1
∑

m=0

X(
ωL+ 2πm

M
)Fm(ω), (2)

where

Fm(ω) =
1

M

L−1
∑

l=0

e−j
ω(M−L)−2πm

M
l. (3)

3. EXTRACTION OF ENF TRACES

In this section, we describe how to extract ENF traces from videos

captured by rolling shutters. Given a video signal, we calculate the

spatial mean of the pixel values for every row, and refer to it as a row

signal hereafter. The row signal contains mainly two components:

the video signal corresponding to the visual scene and the ENF sig-

nal. Denote by R(r, n) the row signal from the rth row in the nth

frame, we have

R(r, n) = V (r, n) + E(r, n), (4)

where V (r, n) is the visual signal, and E(r, n) is the ENF signal.

Denote by T the frame duration of the camera. According to the

notations in the previous section, the sampling rate of the shutter is

fs = M/T , and the perceptual sampling rate of the row signal is

L/T . Here, L is the number of rows per frame, and the exact value

of M depends on the CMOS manufacture’s design and is usually

unknown to the public.

The spectrogram of the row signal is computed using the percep-

tual sampling rate L/T , instead of the actual sampling rate M/T .
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Deriving from Equation (2), we can show that the Fourier represen-

tation of the row signal is

Y (f) =

M−1
∑

m=0

X(
2π

fs
(f +

m

T
))Fm(f). (5)

This suggests that the row signal is the weighted summation of a

series of transformed versions of x(n) that are shifted by multiple of
1

T
in the frequency domain.

3.1. Static Video

We start with the simplest case in which the scene in the video

recording is constant, so that the video signals of every frame in

the video are identical. Equation (4) is thus reduced to

R(r, n) = V (r) + E(r, n). (6)

Note here E(r, n) is sampled from a sinusoid signal whose fre-

quency is deviating slightly from its nominal value. So the average

of E(r, n) for a given row r across a large number of frames (e.g.,

100) should be close to 0, i.e.

Ē(r) =

∑

n
E(r, n)
∑

n
1

≃ 0. (7)

Subtracting from R(r, n) its average value across the frames, de-

noted as R̄(r) , we have

R̂(r, n) = R(r, n)− R̄(r)

= R(r, n)−

∑

n
R(r, n)
∑

n
1

≃ R(r, n)− V (r) = E(r, n). (8)

We can then estimate the ENF signal from R̂(r, n). The ENF signal-

to-noise-ratio (SNR) of R̂(r, n) is higher than that of R(r, n), lead-

ing to a more robust and accurate estimation.

We conducted several experiments using a Canon PowerShot

SX230 camera that has a CMOS sensor with a rolling shutter. The

first experiment is a video recording of a white wall under fluores-

cent lightings, and the camera was fixed during the recording. In this

example the nominal value of ENF is 60 Hz, and the frame rate of the

camera is 1

T
= 29.97 fps. The intensity variations of the fluorescent

lightings should follow the instantaneous energy of the AC power

supply, thus exhibit a oscillation of around 120 Hz. By Equation (5),

the ENF traces embedded by the row signal from the video recording

should appear at around 120+m×29.97 Hz, where m = 1, 2, 3, ....
This matches what we observe from the spectrogram of the row sig-

nal in Figure 4.

The ENF traces can be extracted from the spectrogram of the

row signals around 30 Hz, 60 Hz, 90 Hz... Compared with Figure

1, we can see that the SNR of the ENF signal is now significantly

improved. We estimate the ENF signal by computing the dominant

instantaneous frequency within a small range around the frequency

of interest. The estimated ENF signal from this recording along with

the reference ENF signal simultaneously measured from the power

mains are plotted in Figure 5 (a). They are appropriately shifted

to lie within the same dynamic range, as only the variation trends

are of interest. The ENF signals from the video recording and the

power measurement exhibit very similar trends of variations. The

correlation coefficient between them as a function of the relative time

lag is plotted in Figure 5 (b), and a clear peak is observed at the

correct lag of 0 second.

Fig. 4. The spectrogram of the row signal from a white wall video

recording. Figure is best viewed in color.
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Fig. 5. (a) The ENF signals (appropriately shifted) extracted from a

test video of white wall and the power measurement. (b) Correlation

coefficient between the video and power ENF signal as a function of

relative time lag.

3.2. Video with Motion

Extracting ENF traces from video recordings of scenes with moving

objects is more challenging. In this case, Equation (6) does not hold

any more, and the method in the previous subsection would no longer

work. We explore two preliminary schemes to address this problem

under different assumptions.

In the first scheme, we assume that there is no non-rigid defor-

mation or occlusion, and there is no object entering or departing from

the scene during the video recording. Under this assumption, each

point in a frame can be found in other frames with a certain spatial

shift. Denote by F (r, c, n) the pixel at the rth row and cth column

of frame n. It again can be considered as a combination of the visual

component V (r, c, n) and the ENF component E(r, n):

F (r, c, n) = V (r, c, n) + E(r, n). (9)

Following the constant intensity assumption from the motion estima-

tion literature, for any (n, δn), there is a spatial shift(δr, δc) so that

V (r, c, n) = V (r + δr, c+ δc, n+ δn). (10)

For a frame F (r, c, n), we can find its motion-compensated

version using other frames. Denoting the average of the motion-

compensated frames by F̃ (r, c, n), given that the temporal average
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of the ENF component tends to be 0, we have

F̃ (r, c, n) =
1

N

N
∑

i=1

F (r + δri, c+ δci, n+ δni)

=
1

N

N
∑

i=1

{V (r + δri, c+ δci, n+ δni)

+ E(r + δri, c+ δci, n+ δni)}

≃ V (r, c, n). (11)

Then we can subtract the average of the motion-compensated frames

from the original frame to obtain

∆F (r, c, n) = F (r, c, n)− F̃ (r, c, n) ≃ E(r, n). (12)

The ENF signal can then be estimated from ∆F (r, c, n) using the

techniques described before.

The key to the motion compensation based scheme is finding

the point-wise spatial displacement between video frames. We have

adopted the optical flow approach in this work, and have used the

implementation by [15].

An experiment was conducted to verify the proposed scheme.

The camera was held by hand to shoot a poster displayed under in-

door lightings. During recording, the camera was shaken slightly so

that there is noticeable global motion in the video, as can be seen

in Figure 6. We used the optical flow method to obtain the spatial

shift between frames, and extract the ENF signal as decried above.

Figure 7 shows that the ENF signal estimated from the poster video

presents a high correlation with the ENF reference from power mea-

surements.

Fig. 6. Sample frames of the poster test video.
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Fig. 7. (a) The ENF signals (appropriately shifted) extracted from

the test video of poster and the power measurement. (b) Correlation

coefficient as a function of relative time lag.

The second approach to extracting ENF traces from videos with

motion is to find and utilize only the regions that are static in the

video frames. We demonstrate this idea with the following exam-

ple. We made a video recording of a moving Hexbug toy in a room

with indoor lightings. The Hexbug is a robotic toy of fast movement

powered by the vibrations of a built-in battery motor. Figure 8 shows

several frames of the video. For a current frame, we compare it with

several neighboring frames, and find the regions in which the con-

tent has no significant change. These regions are combined to form

a smoothened frame. We then take the difference of pixel values

between the current frame and the smoothened frame, and use the

resulting residue values to estimate the ENF signal. The ENF sig-

nals extracted from the Hexbug video and its reference ENF signal

from power mains are plotted in Figure 9 (a). They exhibit similar

variation trends and a correlation peak is observed when they are

aligned, as seen from Figure 9 (b).

Fig. 8. Sample frames of the hexbug test video.
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Fig. 9. (a) The ENF signals extracted from the test video of hexbug

and the power measurement (appropriately shifted). (b) Correlation

coefficient as a function of relative time lag.

4. CONCLUSIONS

In summary, this work has studied the problem of extracting ENF

traces from videos. We have exploited the rolling shutter of a CMOS

imaging sensor and treat each line as an ENF impacted signal sam-

ple in order to compensate for the low frame rate of video record-

ings. The rolling shutter mechanism was analyzed using a filter bank

model and multirate signal processing theory. Two methods of ENF

extraction for videos with motions have been proposed. The first

method is motion compensation using estimated pixel shift among

video frames; and the second method is to identify and utilize static

regions in the video. The experimenting results have demonstrated

the effectiveness of the proposed methods.
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