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Abstract-The Electric Network Frequency (EN F) signal can 
be captured in multimedia signals recorded in areas of elec­
trical activity. This has led to the emergence of many forensic 
applications based on the use of ENF signals such as validating 
the time-of-recording of an ENF-containing multimedia signal or 
estimating its recording location based on concurrent reference 
signals from power grids. In this paper, we examine a novel 
application based on the use of the ENF signal that seeks to 
estimate the power grid in which an ENF-containing multimedia 
signal was recorded without relying on the availability of concur­
rent power references. We derive features based on the statistical 
differences in ENF variations between different grids to serve as 
signatures for the grid-of-recording of an ENF-containing signal. 
We use these features in a multiclass machine learning system 
that is able to identify the grid-of-recording of a signal with a 
high accuracy. 

I .  INTRODUCTION 

Electric Network Frequency (ENF) signals have emerged in 
recent years as an important trace of evidence for multimedia 
forensics. The ENF is the supply frequency in power distribu­
tion grids . It has a nominal value of 60Hz in North America 
and 50Hz in most other parts of the world. The instantaneous 
ENF usually fluctuates around its nominal value due to load 
variations and control mechanisms in the grid. The ENF signal 
is the changing values of the ENF over time. These variations 
in the ENF can be considered a random process over time, yet 
the variation trends are almost identical in all locations of the 
same grid at a given time due to the interconnected nature of 
the grid. 

The ENF signal can be extracted from power signals mea­
sured from a power outlet using a step-down transformer and 
a simple voltage divider circuit. To estimate the instantaneous 
ENF signal, the power signal is divided into time-frames, and 
frequency estimation algorithms are applied on each frame 
to determine its dominant frequency [ 1 ] .  The importance 
of the ENF for multimedia forensics emerges because the 
ENF can also be present in audio or video recordings due 
to electromagnetic influences in the place of recording. It 
has been shown that the ENF variations extracted from an 
audio/video signal match with the ENF variations extracted 
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from a clean power signal recorded at the same time and in 
the same power grid as the audio/video signal [ 1 ]-[3 ] .  

Several forensic applications based on  the use of  the ENF 
signal have been proposed. Recent works have shown that the 
ENF can be used to detect tampering or modifications in a 
multimedia signal [3 ] ,  [4] .  Also, when making use of power 
signals as references, the ENF can be used to estimate/validate 
the time-of-recording of the multimedia signal as well as its 
location-of-recording in terms of grid or within a grid [ 1 ] ,  
[2] , [4] .  Most o f  these applications require the knowledge 
of the grid or exhaustively search for the grid in which 
the multimedia signal was recorded using concurrent power 
references. In this paper, we investigate a new problem that 
seeks to estimate the grid in which the ENF-containing signal 
was recorded, without having concurrent power references. 

We have collected power and audio recordings from a 
number of different grids around the world. Upon extracting 
the ENF signals from these recordings, we have noticed that 
there are differences between them in the nature and manner 
of the ENF variations . We hypothesize that processing an 
ENF signal to extract its statistical features may facilitate the 
identification of the grid in which it was recorded. Following 
this, we have devised a machine learning system that learns 
the characteristics of ENF signals from different grids, and 
used it to classify ENF signals in terms of their grid-of­
recording. Such a system that identifies the grid in which a 
multimedia signal was recorded, without having concurrent 
power references to compare with, can be very important for 
multimedia forensics and security. It can pave the way to 
identify the origins of such videos as those of terrorist attacks, 
ransom demands, or child pornography and exploitation [5] .  

The rest o f  this paper i s  organized as follows. Section II 
examines the ENF signals collected from different grids and 
presents the proposed features to be used for the machine 
learning implementation. Section III describes the experi­
mental setup and discusses the results obtained. Section IV 
concludes the paper. 

I I .  LOCATION-DEPENDENT FEATURE S IN ENF SIGNAL S 

We have collected power and audio recordings from seven 
different grids ; among them, three grids have a nominal ENF 
of 60Hz and four grids have a nominal ENF of 50Hz. These 
recordings are collected over different days and times to 
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Fig. 1 .  Sample ENF signals extracted from power recording from different 60Hz grids. 

take into account the possible vanatlOns in ENF properties 
at different day of a week and time of a day, and identify 
features that are dependent on locations and are robust to these 
longer-term variations . For each ENF-containing recording, we 
extracted the ENF signals from consecutive non-overlapping 
frames, each of which is 5 seconds long. Upon examining the 
ENF signals obtained from the different grids, we observe 
several differences that can be used to extract meaningful 
features for grid classification. In this section, we examine 
these statistical differences and discuss the features that we 
choose for grid classification. 

A. Comparing ENF Signals in Different Grids 
For the 60Hz grids, we have recordings from three North 

American grids : Eastern North America (or US East for short), 
Western North America (or US West) and Quebec. Among 
50Hz grids, we have recordings from China, India, Ireland 
and Lebanon. Sample ENF signals extracted from the clean 
power signals from all these grids are shown in Fig. 1 and 
Fig. 2 .  

Examining these figures, we observe several differences 
between the ENF signals originating from different grids . The 
first discerning feature is the mean of an ENF signal. We 
can easily tell if a signal belongs to a 50Hz or 60Hz grid 
depending on how close its mean is to either 50Hz or 60Hz. 
Within the signals whose means are similar, there are also 
some notable differences. For instance, among the 50Hz ENF 
signals, Lebanon's ENF signal mean is above 50Hz most of 
the time. 

The ENF signals from various grids also differ in terms of 
their temporal variations . Our data show that among the 60Hz 
grids, the US East and US West ENF signals appear the most 
similar to each other, although the variations of US East's 
ENF are better contained while US West's ENF seems to drift 
a bit more before returning to the nominal value. Quebec 's 
ENF exhibits more variations than the US ENFs. India has a 
larger range of variations as compared with most other grids . 
The ENF for China tends to vary at a different rate than that 
of Ireland, and Ireland's ENF, though somewhat controlled, 
shows a tendancy to drift before returning to the nominal 
value. Lebanon has frequent outliers dropping by almost 1Hz, 

a characteristic that does not appear in the other ENF signal 
samples. 

To understand these different ENF variations between grids, 
we recall that the ENF changes due to load changes in the 
power grid. The control mechanism reacts to such changes 
by adjusting the power generation to regulate the ENF and 
try to bring it back toward the nominal value. Different 
power grids may have different control mechanisms as well 
as power generation/supply capabilities, thereby affecting the 
effectiveness and manner in which they are controlling the 
variations . As ENF variations are similar throughout an in­
terconnected system and are related to the relative imbalance 
between generation and load and to power-frequency control, 
larger power grids generally tend to have smaller frequency 
variations [6] . Our observations on ENF signals reflect these 
general characteristics of power grids : the US grids have better 
control mechanisms and power resources than most other grids 
that we have observed, so their range of ENF variations is 
very small (around ±O.02Hz) . The large grids of US and 
China exhibit smaller variations than the other smaller grids . 
Lebanon has a very small grid and limited power resources, 
which is reflected in its grid's large ENF variations . India's 
large variations in ENF despite its fairly large grid size can be 
attributed to its power resources and the control mechanisms 
governing its grid. 

B. Feature Extraction 
After examining the empirical differences among grids, we 

now discuss quantitative features that can be extracted. For 
our current discussion, we consider having a set of ENF signal 
segments, s [nl 's, of fixed size S from candidate power grids, 
where these ENF segments correspond to ENF-containing 
signals whose size is on the order of minutes . 

The mean of an ENF segment is a clear feature component 
to include . Another helpful feature is the variance of the 
segment, or its dynamic range (the maximum ENF value minus 
the minimum value) . To develop other features, we found it 
beneficial to apply a transformation to the ENF segment and 
then examine the statistical properties of the transformation 
as potential features . More specifically, we consider wavelet 
signal analysis to study signals at mUltiple time-frequency 
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Fig. 2 .  Sample ENF signals extracted from power recordings from different 50Hz grids. 

resolutions [7] . We apply an L-Ievel dyadic wavelet decom­
position, where each level provides an approximation to the 
original signal and the detailed variations at a specific level of 
resolution. We compute the variances of the high-pass band 
of each decomposition level (the details) and also the vari­
ance of the lowest time-frequency band (the approximation) 
as candidate features . Fig. 3 shows an illustration of a 2-
level wavelet decomposition. In this case, the signals whose 
variances we take as feature components are Approximation 2 
and Details 1 and 2 .  

Fig. 3 .  Illustration o f  2-level wavelet decomposition. 

Complementing the wavelet features, we extract a set of 
features obtained from a statistical modeling of the ENF 
signal. Our recent work has proposed an autoregressive (AR) 
model of order 2 for ENF signals [8 ] ,  [9] . An ENF signal s [n] 
would be modeled as : 

s [n] = al s [n - 1] + a2s [n - 2] + v [n] ( 1 )  

The original study was made on ENF signals from the United 

TABLE I 
PROPOSED FEATURE COMPONENTS 

Index Features 
1 Mean of ENF segment 
2 log(range) of ENF segment 
3 loge variance) of approximation after wavelet 

analysis (L = 4) 
4-7 loge variance) of four levels of detail signals 

computed through wavelet analysis (L = 4) 
8-9 AR(2) modeling parameters 
10 log(variance) of the innovation signal after 

AR(2) modeling 

States, but the idea can be extended to examine ENF signals 
from other grids . We consider three feature values from 
this AR modeling: the two AR parameters resulting from 
the modeling, al and a2 ,  and the variance of the model's 
innovation signal v [n] . The variance of the innovation signal 
is an indicator as to how well the signal can be fitted into 
the AR(2) model, and the AR parameters entail the relations 
between samples of s [n] . 

I I I .  EXPERIMENT S  AND RE SULT S  

A. Experimental Setup 
aJ Dataset preparation: The feature components that we use 
for location classification are summarized in Table 1 .  We apply 
a log operator on the range and variance feature values to focus 
on their orders of magnitude. Feature values are extracted 
from ENF signal segments of equal size S. We use S = 96 
for our implementation that corresponds to an ENF-containing 
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TABLE II 
AVAILABLE TRAINING AND TESTING EXAMPLES 

Number of Training Testing Training Testing 
examples - power - power - audio - audio 
US East 242 242 64 65 
US West 97 98 34 34 
Quebec 47 48 0 0 
China 197 198 0 0 
India 47 47 0 0 

Ireland 124 125 82 82 
Lebanon 429 429 103 103 

signal of 8 minutes long, and the frame size for computing one 
instantaneous ENF point is 5 seconds . The computed feature 
values are normalized to the range of [- 1 00, 1 00] by linear 
scaling, whereby the kth feature value in a training example 
is normalized according to the feature values in position k of 
all training examples. The normalization parameters are stored 
and later applied to the testing examples to normalize them. 

b) Choice of supervised learning mechanism: We use a Sup­
port Vector Machine (SVM) to build the location classifier. 
Our implementation makes use of the LIBSVM library [ 1 0] ,  
which implements a multiclass SVM that uses an all vs .  all 
approach: For a total of M classes, the system trains (ft;i) 
binary classifiers ; each binary classifier is trained on one of the (ft;i) possible pairs of classes, learning to differentiate between 
the respective two classes. When testing the trained system, 
the testing example is passed through all binary classifiers, and 
votes are assigned to each possible class based on which class 
emerges as the winner from each binary classification task. 
The final winning class is the class with the largest number 
of votes . For a testing example, the LIBSVM implementation 
also provides M probability (confidence) values, where the 
lh probability value gives the estimated probability that the 
testing example belongs to the lh class . 

Taking 50% of the data as testing data, and following our 
choice of S, the numbers of training and testing examples 
that we have for each grid are listed in Table II. Due to 
logistical and resource constraints in collecting recordings 
from various grids around the world, the available data is 
imbalanced: We have significantly more recordings from some 
grids than others, and we do not have audio recordings from 
all the grids considered. This imbalance in training data can 
create a bias problem or overfitting when testing the system. 
If a system is trained on a dataset where the majority of the 
training examples belong to one class, it tends to be more 
biased to assign the testing examples to this majority class 
[ 1 1 ] .  To tackle this issue, we use a variant of SVM called the 
weighted SVM, which is supported by LIBSVM. 

SVM implementations usually include a fixed cost value 
C which controls the penalty on making a mistake while 
classifying an example. The weighted SVM addresses the issue 
of imbalanced data through assigning different cost values for 
examples from different classes. The larger class has a smaller 
cost value than the smaller class, which means that the penalty 
for making a mistake on an example from the smaller class 

TABLE III 
DESCRIPTION OF THE TRAINED SVM SYSTEMS 

System Num. of classes Description 
I 7 classes Trained only on ENF extracted from 

power signals. 
II 4 classes Trained only on ENF extracted from 

audio signals. 
Trained on all available training data, 

III 7 classes assuming that the audio and power 
ENF signals obtained from the same 
grid as belonging to the same class .  

TABLE IV 
ACCURACIES FOR DIFFERENT SYSTEMS AVERAGED OVER 20 ROUNDS 

System Testing on Testing on 
power data audio data 

I 98.43% 74 .76% 
II 75 . 10% 94 .33% 
111 97.95% 93 .71% 

would be larger [ 1 1 ] .  Here, with M classes, the cost for class 
j that has Nj training examples would be Wj . C with: 

Nmin h I '  M d N . N Wj = -- , w ere < J < an min = mm j . Nj J 
(2) 

Our implementation chooses the Radial Basis Function 
(RBF) kernel for SVMs. Using the LIBSVM library, two 
important parameters need to be chosen for the RBF kernel :  
the cost parameter C and a parameter 'Y.  For each SVM 
classifier that we train, we carry out a ten-fold cross validation 
examination to select these two parameters. 

c) Systems to be trained: As detailed in Table II, the data 
that we have are of two main types: ENF segments extracted 
either from power recordings or audio recordings . Generally, 
ENF segments extracted from power recordings are cleaner 
signals with high signal-to-noise ratio (SNR), while the ENF 
segments extracted from audio recordings can be noisy. This 
would affect the quality of the feature values extracted. In 
order to understand the extent to which a machine learning 
system would be able to successfully classify ENF segments 
of varying noise conditions into grids, we train three different 
SVM systems and then examine the testing results obtained 
from each. The differences between the three systems are listed 
in Table III. 

If the decision given by the multi-class SVM stage for 
a testing example has a confidence lower than a threshold 
(e.g. 0 .6), we advance this example to a second stage. In 
this new stage, we subject the example to a binary SVM 
classifier trained on the two classes that received the highest 
confidence in the first stage. This would imply storing (�) 
binary classifiers trained on all possible binary combinations 
of the classes, in order to help reach more confident final 
decisions for the testing data. 

B. Results and Discussions 
a) Results overview: In this subsection, we present the results 
obtained for testing the data on the three systems listed in 
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TABLE V 
CONFUSION MATRIX FOR POWER ENF TESTING DATA ON SYSTEM I (ACCURACIES AVERAGED OVER 20 ROUNDS) 

Testing Num. of US US 
Classes examples East West 

US East power 242 98 . 86% 1 . 14% 

US West power 98 2 . 1 1 % 97.88% 
Quebec power 48 0 0 
China power 198 0 0 
India power 47 0 0 

Ireland power 125 0 0 
Lebanon power 429 0 0 

Table III. We choose 0 .6 as the threshold for the confidence 
value to advance to a further binary classification stage. For 
each system, we show the power and audio testing results 
separately to understand how well the system is suited for the 
two types of signals .  

To generate our results, we first divide al l the available data 
into six groups, where each group contains approximately one­
sixth of the examples from each grid. Then, we train each of 
our three SVM systems for 20 rounds, considering in each 
round a different combination of three groups out of the six 
as training data and the remaining three groups as testing data. 
The results shown here are averaged over the results of these 
20 training/testing rounds, where the number of training and 
testing examples are approximately equal to each other for a 
given grid. 

Table IV lists the accuracies achieved for testing on each 
system for both the clean ENF from power signals and the 
noisy ENF from audio signals .  Testing the power data on a 
system trained on power data (i .e . Systems I and III) results in 
high testing accuracy of about 98% while testing this power 
data on the system trained only on audio data (i .e . System 
II) results in a lower accuracy of only about 75%. Similarly, 
testing the audio data on a system trained on audio data (i .e . 
Systems II and III) results in high accuracy of about 94% while 
testing this audio data on a system not trained on audio data 
(i .e . System I) results in a lower accuracy of only about 75%. 
This shows that it is important to incorporate into training 
similar signal conditions that the system would be anticipated 
to see in testing. 

b) Close examination of results: To understand these results 
better, we examine the confusion matrices of the three sys­
tems considered. These matrices are shown in Tables V, VI 
and VII, respectively. In each of these tables, the labels of 
the rows denote the actual grids and the conditions of the 
signals tested, while the labels of the columns denote the 
grids predicted by the system. The tables show how well the 
testing examples from each grid and signal condition were 
classified when applied to our trained systems. We include the 
approximate number of testing examples available for each 
class to highlight the difference in the number of examples 
available for each class in order to help present the proper 
context for the corresponding testing percentages. As Systems 
I and II proved to be ineffective at classifying data they are 

Quebec China India Ireland Lebanon 

0 0 0 0 0 

0 0 0 0 0 
100% 0 0 0 0 

0 99.2 1% 0.08% 0 .71% 0 
0 5 . 30%% 93 .42% 1 . 17% 0. 1 1 % 
0 0.04% 0 99. 84% 0. 12% 
0 0 0.20% 0 99. 80% 

TABLE VI 
CONFUSION MATRIX FOR AUDIO ENF TESTING DATA ON SYSTEM II  

(ACCURACIES AVERAGED OVER 20 ROUNDS) 

Testing Num. of US US Ireland Lebanon 
Classes examples East West 

US East audio 65 93 .25% 6.75% 0 0 
US West audio 34 1 1 .27% 88 .73% 0 0 
Ireland audio 82 0 0 98 .96% 1 .04% 

Lebanon audio 103 0 0 3 .63% 96 .37% 

not trained on, we do not present the testing of audio data on 
System I or power data on System II due to space limit. 

The entries on the diagonals of the tables show the per­
centage of correct classification. We can see that with the 
incorporation of mean ENF value as a feature, the 50Hz signals 
are never mistaken for 60Hz signals, and vice versa. 

Considering the power signals, we can see that the correct 
classification percentages in Tables V and VII fall in the high 
range of 93 - 1 00%. Quebec signals are notable for their 1 00% 
identification rate, due to the clear distinction in the range and 
nature of their variations as compared with the more controlled 
US signals .  US East and US West signals become mistaken for 
each other, which is understandable given the close similarity 
between them in control mechanisms and power resources as 
seen in Fig. 1 .  Notably, signals from India can be mistaken 
for signals from China or Lebanon. A possible reason behind 
this is that India's ENF signal is inconsistent in its properties, 
with the varying mean and different variations . In addition, we 
have fewer data from India as compared with the data from 
other 50Hz grids . 

Considering the audio signals, we can see that the correct 
classification percentage range in Tables VI and VII drops to 
8 8-93% for the 60Hz US signals and 95-99% for the 50Hz 
signals in Ireland and Lebanon. The different performance 
between the two groups is because the US signals are more 
similar to each other than Ireland vs. Lebanon. The drop in 
classification accuracies as compared with the power signals 
can be explained by the nature of the audio ENF signals .  
The ENF from audio signals tends to be noisier than from 
the power signals, and the amount of noise and distortions 
can be different even within signals of the same class, due 
to different recording conditions. This can create confusions 
for the machine learning system when defining the class 
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TABLE VII 
CONFUSION MATRIX FOR POWER AND AUDIO ENF TESTING DATA ON SYSTEM III  (ACCURACIES AVERAGED OVER 20 ROUNDS ) 

Testing Num. of US US 
Classes examples East West 

US East power 242 99 . 1 9% 0 . 8 1% 
U S  West power 97 4 .83% 95 . 17% 
Quebec power 47 0 0 
China power 197 0 0 
India power 47 0 0 

Ireland power 125 0 0 
Lebanon power 429 0 0 

US East audio 65 88 .99% 9. 84% 
US West audio 34 9.23% 90.76% 
Ireland audio 82 0 0 

Lebanon audio 103 0 0 

boundaries and could lead to more mistakes in identification. 
Another reason is the fewer amount of audio data available to 
us. 

Comparing Systems I and II with System III, we can see 
from Table IV that the correct classification percentages for 
System III are slightly smaller than their counterparts in 
Systems I and II. System III defines classes as a mixture 
of audio and power ENF signals, which means that signals 
belonging to one class have a larger range of differences from 
one another due to their varying noise levels. 

Overall, by incorporating training examples of mUltiple con­
ditions, we have developed a machine learning based system 
(System III) that achieves a high classification accuracy on 
ENF signals extracted from both power and audio recordings . 
Meanwhile, if the test signal's condition in terms of noise 
and distortion is known a priori or can be estimated well, 
classification performance may have a small amount of further 
improvement by employing a system that is well trained on 
the corresponding conditions (Systems I and II). 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we have developed a machine learning based 
system that can identify the grid of origin of an ENF signal 
without having concurrent power references. ENF signals from 
different power grids display different statistical character­
istics, which can be exploited to identify their power grid. 
These differences are attributed to the size of power grids 
and the techniques and available power/energy resources by 
which the grids are controlled and operated. We have presented 
and compared three machine learning systems that are trained 
on identifying the origin of ENF signals embedded in clean 
power signals and/or noisy audio signals from different grids . 
For the system that gives the all-around high performance, 
System III, we have achieved an average accuracy of 98% 
on identifying ENF signals extracted from power signals from 
seven candidate power grids, and an average accuracy of 94% 
on identifying ENF signals extracted from audio signals from 
four candidate power grids . 

This work presents a new capability of using ENF signals 
for multimedia forensics, by identifying the grid of origin 
of an audio/video recording via extracting and classifying its 

Quebec China India Ireland Lebanon 

0 0 0 0 0 
0 0 0 0 0 

100% 0 0 0 0 
0 99.06% 0.05% 0 . 8 1% 0.08% 
0 4 .35% 93 .52% 0 1 .27% 
0 0. 12% 0.04% 98. 87% 0.96% 
0 0 0. 14% 0 .01% 99.85% 

1 . 16% 0 0 0 0 
0 0 0 0 0 
0 0. 12% 0 99. 82% 0.06% 
0 0. 16% 0.05% 4. 50% 95 . 30% 

ENF signal. In our ongoing and future work, we are collecting 
more data from these and other power grids, and investigating 
how to further enhance the perfonnance . We plan to explore 
additional features and examine the benefits of incorporating 
them. 
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