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ABSTRACT
A time stamp based on the power network signature called
the Electrical Network Frequency (ENF) has been used by
an emerging class of approaches for authenticating digital
audio and video recordings in computer-to-computer com-
munications. However, the presence of adversaries may ren-
der the time stamp insecure, and it is crucial to understand
the robustness of ENF analysis against anti-forensic opera-
tions. This paper investigates possible anti-forensic opera-
tions that can remove and alter the ENF signal while trying
to preserve the host signal, and develops detection methods
targeting these operations. Improvements over anti-forensic
operations that can circumvent the detection are also exam-
ined, for which various trade-offs are discussed. To develop
an understanding of the dynamics between a forensic an-
alyst and an adversary, an evolutionary perspective and a
game-theoretical perspective are proposed, which allow for
a comprehensive characterization of plausible anti-forensic
strategies and countermeasures. Such an understanding has
the potential to lead to more secure and reliable time stamp
schemes based on ENF analysis.

Categories and Subject Descriptors
I.5.4 [Applications]: Signal Processing; K.6.5 [Security
and Protection]: Authentication

General Terms
Security, Algorithms, Experimentation.

Keywords
Digital Recording Authentication, Time Stamp, Electrical
Network Frequency, Information Forensics, Game Theory.

1. INTRODUCTION
The recent decade has witnessed a huge amount of media

data, in the form of audio, image, and video, created by var-
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ious digital recording devices. Once a media document con-
taining important information is created, it can be easily dis-
tributed through network and make rapid and broad social
impacts through social media infrastructure. Due to their
digital nature, these media data can be vulnerable to digital
forgeries. Typical examples include digital editing software
to cut a clip from one audio/video file and insert into an-
other, or modifying the creation date/time in the metadata
field. Given the feasibility of digital forgeries, secure use
of media data requires forensic authentication mechanisms
that can identify data origin and detect content forgery.

One emerging direction of digital recording authentication
is to exploit an potential time stamp originated from the
power networks. This time stamp, referred to as the Elec-
trical Network Frequency (ENF), is based on the fluctuation
of the supply frequency of a power grid. The nominal value
of the ENF is 60Hz in the Americas, Taiwan, Saudi Arabia
and Philippines, and is 50Hz in other regions except Japan,
which adopts both frequencies. It has been found that dig-
ital devices such as audio recorders, CCTV recorders, and
camcorders that are plugged into the power systems or are
near power sources may pick up the ENF signal due to the
interference from electromagnetic fields created by power
sources [4]. An important property about the ENF signal is
that its frequency is fluctuating around the nominal value
because of varying loads on the power grid. For example, in
the United States, the ENF usually varies between 59.9Hz
and 60.1Hz. It has also been shown that the fluctuations
measured at the same time but at two different locations
under the same power grid follow basically the same trend
[4].

The fluctuation of the ENF has been successfully exploited
to authenticate digital recordings [4, 10, 9, 3]. In [4, 10], it
is demonstrated that the ENF signal is captured in audio
recordings and exhibits a high correlation with the ENF sig-
nal measured from the power mains supply at the same time.
As such, the ENF signal can be used to indicate the record-
ing time of an audio recording provided that a database of
ground-truth ENF signals from the power grid is accessible.
An alternative technique in [9] detects the phase discontinu-
ity of the ENF signal, the presence of which suggests where
tampering has taken place. Most recently, the work in [3]
validated for the first time the presence of the ENF signal
in visual recordings. Optical sensors and video cameras are
used to demonstrate that the ENF signal can be captured
from fluorescent lighting and further picked up by video cam-
eras in an indoor environment. This finding suggests that
the same ENF-based time stamp available in audio record-



(a) Power mains ENF signal (b) Audio ENF signal

−20 −10 0 10 20

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time frame lag

no
rm

al
iz

ed
 c

or
re

la
tio

n

(c) Normalized correlation

Figure 1: (a) Spectrogram of a power mains signal around the nominal ENF value of 60Hz; (b) spectrogram
of an audio signal; (c) normalized correlation between the two extracted ENF signals as a function of their
relative frame lag.

ings can be used to authenticate visual data as well. Fur-
thermore, forensic binding can be achieved for visual and
audio tracks to verify their temporal synchronization.
The promising potential of ENF analysis in forensic in-

vestigations is based on the premise that the ENF signal is
present in an audio or video signal in an unaltered manner.
This premise ensures that once the ENF signal is success-
fully extracted, it can be used as a truth-telling evidence
to verify time, location, and integrity. However, similar to
many other security and forensics tasks, there exist adver-
saries who have the incentives to perform anti-forensic op-

erations to counteract forensic investigations [6, 2]. In order
to establish ENF-based analysis as a credible technique, it is
of paramount importance to understand its security against
anti-forensic operations, namely, whether the ENF signal
can be compromised, and to what extent. Further, forensic
analysts should understand and address identified vulnera-
bilities in ENF analysis, and take into consideration possible
improvements that an adversary may make. To the best of
our knowledge, the current paper is the first work that con-
siders these issues. We apply signal processing techniques
to design anti-forensic operations, and then develop detec-
tion methods targeting these operations. In response to the
detection methods, improvements over the anti-forensic op-
erations are also investigated in this paper, for which various
trade-offs are discussed. More fundamentally, we develop a
comprehensive understanding of the interplay between the
forensic analyst and the adversary, from both an evolution-
ary perspective and a game-theoretic perspective. We be-
lieve that such an understanding can be used to character-
ize a wide range of actions that may take place, and will
contribute to more secure and reliable time stamp schemes
based on ENF analysis.
The rest of this paper is organized as follows. Section 2

reviews the mechanism of ENF signal extraction and match-
ing. Section 3 investigates ways to remove and embed ENF
signals present in a host signal. Section 4 presents the con-
ditions for anti-forensics detection, which motivate a few
concrete methods for anti-forensics detection. In response
to the detection, Section 5 studies improvements over the
anti-forensic operations, for which various trade-offs are dis-
cussed. In view of the dynamic nature of the anti-forensics
and the countermeasures, Section 6 provides an evolutionary
perspective and a game-theoretic perspective to encompass

a wide range of actions and interactions available to a foren-
sic analyst and an adversary. Finally, Section 7 concludes
this paper.

2. ENF SIGNAL EXTRACTION AND
MATCHING

In this section, we briefly describe our procedure for ex-
tracting the ENF fluctuations from a given signal. Two
types of signals are considered in this paper for ENF signal
extraction and matching. The first is the audio signal that
contains speech recordings mixed with music and sporadic
sound activities. All audio signals used in this paper have
been sampled at 8000Hz with 16-bit quantization precision
and a length of 10 minutes. The 10-minute duration ensures
that the audio signal as well as the ENF fluctuations are
sufficiently long for reliable matching based on the state of
the art. Any anti-forensic operations to be investigated in
this paper are also assumed to be performed on such audio
signals. The second type of signal is the power mains signal
that is recorded directly from a power source using a voltage
divider device, which is used as ground truth for matching.

Our ENF signal extraction basically follows the proce-
dure described in [3]. The recorded signal (either an audio
or power mains signal) is first down-sampled to 500Hz to re-
duce the computational complexity. A filtering process can
then be carried out to only retain the signal component that
carries the ENF. The dominant instantaneous frequency in
the recorded signal is then estimated to measure the fluctu-
ations in ENF as a function of time, for which we use spec-
trogram based weighted energy method as in [3]. To obtain
the spectrogram of the ENF signal, we divide the signal into
overlapping frames of 16 seconds each with an overlap factor
of 50%. A high resolution Fast Fourier Transform (FFT) of
8192 points is carried out for each frame. After obtaining the
spectrogram, we calculate the weighted average frequency
in each time bin of the spectrogram by weighing frequency
bins around the nominal values of the ENF with the energy
present in the corresponding frequency. From the estimated
frequency fluctuations in ENF signals from the audio and
power mains recordings, we calculate their normalized cor-
relation for different values of frame lag. The range of the
normalized correlation value is between −1 and +1. As an
example, Fig. 1(a) and 1(b) show the spectrograms around
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Figure 2: (a) The FFT of an authentic audio clip; (b) the result of bandstop filtering; (c) the result of
bandstop filtering followed by noise filling-in.
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Figure 3: ENF embedding result with peak magni-
tude matched (see Fig. 2(a) for comparison).

the nominal ENF value of 60Hz of a power mains signal and
an audio signal that were recorded at the same time. Their
normalized correlation values as a function the frame lag is
plotted in Fig. 1(c). We can see that they exhibit consistent
fluctuations, which is confirmed by the peak normalized cor-
relation value of 0.86 in Fig. 1(c) when the two recordings
are synchronized.

3. ANTI-FORENSIC OPERATIONS
AGAINST ENF ANALYSIS

In this section, we investigate anti-forensic operations that
can counteract ENF analysis. The general purpose of anti-
forensic operations is to alter a host signal so that the traces
left in the host signal that pertain to specific forensic inves-
tigations are removed or changed. Although plausible anti-
forensic operations and countermeasures are domain-specific
and may seem ad-hoc at times, exploring these operations
and countermeasures is necessary for identifying the avail-
able operations of both the forensic analyst and the adver-
sary, leading to a comprehensive understanding of the overall
strategy space.
In many anti-forensic tasks against information protec-

tion, the adversary has to preserve the quality of the host
signal, otherwise the quality degradation in itself will in-
dicate the use of anti-forensics and the host signal will be
rejected to be forensic evidence. In our problem, the ENF
signal is restricted around narrow neighborhoods of known
frequency locations. As such, the ENF signal is less likely
to be tightly coupled with the main body of the host signal,

making it possible to manipulate the ENF signal while try-
ing to preserve the perceptual quality of the host signal. In
this section, we explore two different levels of anti-forensics,
starting with the removal of the ENF signal and further con-
sidering the embedding of an alien ENF signal.

3.1 ENF Signal Removal by a Bandstop Filter
The first anti-forensic operation that we consider is to re-

move the ENF signal present in a host signal. Since the
ENF signal in nature is restricted in a small frequency re-
gion (a.k.a. narrowband hereafter), it is reasonable for an
adversary to apply a bandstop filter to remove the ENF
signal. Bandstop filtering (a.k.a. notch filtering) is a well-
studied subject in digital signal processing [8]. A number
of design methodologies, such as equiripple filter or Kaiser
window filter design, have been proposed and implemented
in popular software packages such as MATLAB. To perform
bandstop filtering, an adversary selects two main parame-
ters, the stopband bandwidth and the transition bandwidth.
The stopband bandwidth controls the frequency range in
which the signal is attenuated to the minimum magnitude
level. For the task of ENF signal removal, the choice of
stopband bandwidth depends on the actual range of ENF
variation, and the ENF signal of wider variations may be
removed using wider stopbands. The second parameter, the
transition bandwidth, is the range in which the signal at-
tenuation varies from maximum to minimum. It has an
impact on the filter length and computational complexity;
a sharper bandwidth implies a longer filter and more time
required to compute the filter output. Since accurate ENF
matching requires ENF signals of sufficiently long durations,
it is reasonable to assume that audio signals used for anti-
forensic operations are also sufficiently long. Therefore, if
the adversary can afford the computational cost, he/she has
enough signal samples to carry out a bandstop filtering with
a reasonably small transition bandwidth. As an example,
when the sampling frequency is 8000Hz as common for voice
signals, we set the stopband bandwidth as ±1Hz, and the
transition bandwidth as 8Hz. If the equiripple linear-phase
design is adopted, the filter has a length of 3627 samples,
which corresponds to a duration of about half a second.

To illustrate the effect of bandstop filtering, we show in
Fig. 2(a) a typical Fourier analysis result on a 10-minute
audio recording. There is a salient peak located at 60Hz,
which signifies the existence of the ENF signal. The effect
of bandstop filtering for the same audio recording is shown
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Figure 4: (a) A purely sinusoidal sequence of instantaneous frequencies to be embedded as the ENF signal;
(b) the spectrogram around 60Hz where a strong component is present due to the embedding of (a); (c) the
corresponding extracted ENF signal.

in Fig. 2(b), wherein the peak at 60Hz disappears, suggest-
ing that the ENF signal has been removed. The removal
is further justified by comparing the normalized correlation
between the ENF signal extracted from power mains ground
truth and the ENF signal extracted from the audio record-
ing. We notice that the normalized correlation reduces from
0.86 to −0.10 due to bandstop filtering, suggesting that the
ENF signal has been effectively removed. Furthermore, our
subjective tests do not find perceptual audio quality loss,
meaning that the ENF signal removal preserves the host
signal.
Although bandstop filtering can remove the ENF signal, a

notch of very low magnitude around the 60Hz frequency can
be noticed in Fig. 2(b). The notch is a strong evidence that
suggests the use of bandstop filtering, making the result-
ing audio recording no longer trustworthy and hence anti-
forensics essentially fails. To erase such traces, an option is
to “fill in” the frequency region that has been suppressed by
bandstop filtering. We design a bandpass filter with pass-
band bandwidth ±1Hz and transition bandwidth 8Hz and
pass a white noise signal through the filter to obtain a nar-
rowband signal that is then added to the bandstopped audio
recording. The noise power is selected so that the result-
ing narrowband magnitude equals the average magnitude of
neighboring narrowbands, as shown in Fig. 2(c). Since the
narrowband now appears smooth and there is no peak at
60Hz, it becomes more difficult for the forensic analyst to
determine if there was measurable ENF signal present at
60Hz.

3.2 Embedding Phony ENF Signals
In addition to removing the ENF signal so that the record-

ing time of an audio recording is no longer available, an ad-
versary may further embed a fake ENF signal into a host
signal so that ENF analysis conducted over the forged audio
signal leads to a wrong estimate for the recording time. This
can be done by modulating a carrier sinusoidal signal of a
nominal frequency using a given sequence of instantaneous
frequencies. In mathematical terms, the carrier signal can
be written as

c(t) = A cos(2πfct). (1)

The modulation is given by

e(t) = A cos

(

2π

∫ t

0

fm(τ)dτ

)

, (2)

which is the standard form of Frequency Modulation (FM)
synthesis [5]. Indeed, the instantaneous frequency of (2) is

given by d
dt

1
2π

(

2π
∫ t

0
fm(τ)dτ

)

= fm(t). The magnitude A

is a constant to be determined.
Next, we discuss how to embed a modulated signal into a

host signal. As in Section 3.1, we first apply a bandstop filter
on the host signal and then fill in bandpassed noise whose
magnitude is matched to neighborhood regions. The mag-
nitude A in (2) is chosen so that the peak FFT magnitude
at the nominal frequency remains the same after the anti-
forensic operation, as shown in Fig. 3. This can be achieved
using a binary search procedure: starting with a guess of A,
each iteration compares the resulting peak FFT magnitude
to the targeted value and increases/decreases A accordingly.

We consider two possible types of synthetic ENF signals.
If there is no real ENF signal from another time or another
power grid available for embedding, one can embed a purely
artificial signal such as the sinusoidal variation as shown in
Fig. 4(a). The resulting spectrogram has a strong compo-
nent around 60Hz as shown in Fig. 4(b), and the ENF signal
extracted from the forged audio signal is shown in Fig. 4(c),
which is a noisy version of Fig. 4(a) since the embedded
signal has been mixed into the narrowband. On the other
hand, if a real ENF signal originated from a different time or
from another power grid is available, then such a ENF signal
can also be embedded into the host signal to mislead foren-
sic analysis. Fig. 5(a) shows a power mains ground truth
ENF signal, and the corresponding extracted ENF is shown
in Fig. 5(b). We can see that the embedded ENF can also
be extracted in a more noisy form.

The proposed embedding above is based on the FM syn-
thesis. Alternatively, one can perform a “transplantation”
operation to duplicate the ENF signal from one signal into
another signal. Specifically, to embed an ENF signal present
in a source audio signal into a host signal, we perform band-
pass and bandstop filtering upon the source and the host
signal, respectively, and then add the bandpassed output of
the source signal into the bandstopped output of the host
signal. In Fig. 6(a), we show the spectrogram of a trans-
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Figure 5: (a) Ground-truth ENF signal measured
from the power mains; (b) the corresponding ex-
tracted ENF signal.

plantation result in which the 60Hz narrowband has been
replaced. The extracted ENF signals from the source signal
and the resulting signal are shown in Fig. 6(b). The obser-
vation that they overlap tightly indicates the effectiveness
of the transplantation from an anti-forensic point of view.

4. DETECTING ANTI-FORENSICS
Our study in Section 3 has shown a number of anti-forensic

operations that can counteract ENF analysis. In response
to these operations, a forensic analyst would devise ways to
detect the use of anti-forensic operations, so that a forged
audio signal can be identified and rejected as trustworthy
evidence. In this section, we first discuss conditions under
which the detection is feasible, and then propose effective
detection methods.

4.1 Detectability of Anti-Forensic Operations
In order to detect anti-forensic operations, we first provide

a mathematical formulation of the anti-forensic operations
discussed in Section 3. Without loss of generality, the anti-
forensic operations proposed therein create a forged audio
signal by mixing a bandstopped input signal and a band-
passed alien signal (either real or synthetic). In the fre-
quency domain, the overall anti-forensic operation can be
represented as

Y (ω) = e−jαω [X(ω)Bs(ω) + E(ω)Bp(ω)] , (3)

where X(ω) is the frequency-domain representation of the
original audio signal indexed by the frequency ω (in Hz),
Y (ω) is the resulting audio signal, E(ω) is the alien signal,
Bs(ω) and Bp(ω) are the frequency responses of the band-
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Figure 6: (a) Result of narrowband transplantation
around 60Hz; (b) ENF signals extracted from the
source signal and from the resulting signal.

stop filter and the bandpass filter, respectively, and e−jαω is
a phase shift corresponding to a possible time-domain delay
of α. The delay is introduced to avoid imperfect boundary
conditions due to filtering.

Consider two mutually exclusive cases. For the frequency
outside the narrow passband, |Bs(ω)| ≈ 1 and |Bp(ω)| ≈ 0,
and we have

|Y (ω)| ≈ |X(ω)|,

∠Y (ω) ≈ −αω + ∠X(ω) + ∠Bs(ω). (4)

In practice, both the bandstop and the bandpass filters can
be designed as zero-phase or linear-phase. As such, the
phase term ∠Bs(ω) is linear outside the narrowband, and
by properly selecting the delay α, the two terms −αω and
∠Bs(ω) can be cancelled out, leading to Y (ω) ≈ X(ω) out-
side the narrowband. In other words, the anti-forensic op-
erations basically preserve the host signal outside the nar-
rowband. On the other hand, for the frequency inside the
narrowband, we have |Bs(ω)| ≈ 0 and |Bp(ω)| ≈ 1, and

|Y (ω)| ≈ |E(ω)|,

∠Y (ω) ≈ −αω + ∠E(ω) + ∠Bp(ω) (5)

≈ ∠E(ω) + (β − α)ω

provided that the bandpass filter has linear phase in the nar-
rowband. This suggests Y (ω) ≈ e(β−α)ωE(ω), that is, the
output signal inside the narrowband resembles the alien sig-
nal inside the narrowband with a possible phase shift. If the
bandstop and bandpass filters are designed using the same
methods, then α and β are similar and thus the phase shift
is close to zero. To summarize, overall the proposed anti-



forensic operations from Section 3 only alter the narrowband
and leave no substantial influence outside the narrowband.
In order to detect anti-forensic operations, a forensic an-

alyst can carry out a likelihood ratio (LR) test to compare
the likelihoods of a forged audio signal and an unforged au-
dio signal. Specifically, the analyst evaluates the following
likelihood ratio:

LR =
P (Y |forged)

P (Y |unforged)

=
P (O = o, I = i|forged)

P (O = o, I = i|unforged)
(6)

=
P (I = i|forged, O = o)

P (I = i|unforged, O = o)
, (7)

where we decompose Y into a pair of (I,O) in (6), stand-
ing for the inside-narrowband and outside-narrowband com-
ponents, respectively, and the terms P (O = o|forged) and
P (O = o|unforged) are cancelled out in (7) since the anti-
forensic operations do not affect the host signal outside the
narrowband.
For the anti-forensic operations proposed in Section 3, the

forged narrowband is independent of the signal outside the
narrowband. Therefore, the numerator in (7) can be written
as PEI(i), standing for the likelihood of observing a narrow-
band i conditioned that the narrowband is from an alien
signal. The denominator, on the other hand, has to account
for the dependence of the narrowband on the signal outside
the narrowband. Specifically, the denominator can be de-
noted as PXI,o(i), which is the likelihood of a narrowband i
given that the narrowband is native (i.e., not from another
signal) and the signal outside the narrowband is o. In sum-
mary, the likelihood ratio is given by PEI(i)/PXI,o(i).
From such an analysis, we see that a distinction has to

be made between the original audio signal X and the alien
signal E in the narrowband, in order to detect anti-forensics
operations. This is, however, a challenging task, since the
adversary can design the bandstop filter to make the nar-
rowband very “narrow”, especially compared to the wide
frequency range associated with the much higher sampling
frequency. As a result, the characteristics of the original
audio signal X and the alien signal E cannot be easily dis-
tinguished in the narrowband. To illustrate such a difficulty
for the forensic analyst, Fig. 7(a) shows the overall phase of
an unforged audio signal as well as its forged version, and
their difference is hardly noticeable. Zooming into the nar-
rowband as shown in Fig. 7(b), we observe that the two ver-
sions differ in the narrowband, but it is not straightforward
to characterize their statistical difference and to determine
which one is forged.

4.2 Inter-Frequency Consistency Check
Section 4.1 shows that anti-forensic operations can be de-

tected if one can distinguish the two distributions PEI(i) and
PXI,o(i) in the likelihood ratio. Motivated by this finding,
we propose a few ways toward this end.
We have considered so far the scenario that a forensic an-

alyst only extracts ENF signals from a given frequency (e.g.,
the fundamental frequency of 60Hz). In this case, it is rea-
sonable for an adversary to focus on tackling this frequency
as well. However, due to the non-linear behavior of electri-
cal circuits, the ENF signal is often present not only at the
fundamental frequency, but also at the harmonic frequen-
cies (120Hz, 180Hz, etc) [1]. As such, in order to detect
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Figure 7: (a) Comparison of overall phase associated
with unforged and forged audio signals; (b) compar-
ison of phase around 60Hz associated with unforged
and forged audio signals.

anti-forensic operations, the forensic analyst can perform
ENF extraction at more than one frequency, and examine
the consistency of multiple ENF estimates. To illustrate
this idea, we extract ENF signals from an audio signal at
60Hz and 180Hz, respectively, and the results are shown in
Fig. 8. Note that these two signals have been normalized
with respect to their average values. It can be seen that the
two extracted ENF signals highly overlap with each other,
and their normalized correlation is 0.66. This is significantly
higher than the average normalized correlation value of 0.02
when the 60Hz and 180Hz ENF signals are extracted from
two different audio signals, respectively. An issue with this
detection method is that the magnitude of ENF signal at
higher harmonic frequencies is usually lower, and the host
audio signal may have higher magnitude at these frequen-
cies. Hence, the ENF extraction quality is lower at these
harmonic frequencies, and it is likely that no ENF signals
can be extracted for reliable consistency check.

4.3 Spectrogram Consistency Check
As an adversary performs the anti-forensic operations pro-

posed in Section 3, the resulting narrowband often exhibits
some kind of inconsistency with the signal outside the nar-
rowband, especially the abrupt boundaries that are easily
noticeable around 120Hz. Mathematically, this means the
value of PXI,o(i) is small, which serves as a strong indicator
of the existence of anti-forensics. As an example, consider
an adversary that alters the ENF at 120Hz. A typical result-
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Figure 8: Consistency of ENF signals extracted at
the fundamental frequency of 60Hz and a harmonic
frequency of 180Hz.

Figure 9: Spectrogram consistency check for a sig-
nal with its 120Hz narrowband forged; the obvious
inconsistency around 120Hz is highlighted by the
dashed box.

ing spectrogram is shown in Fig. 9, where discontinuity at
the narrowband boundaries centered at 120Hz can be clearly
noticed. Such inconsistency occurs if the host audio and the
alien audio signal exhibit strong but unsynchronized tempo-
ral variations.
Although the spectrogram consistency check is powerful,

automating this check is non-trivial as in reality, a forensic
analyst has no a priori knowledge about the narrowband
range. In order to detect the boundary discontinuity the
analyst has to scan the entire frequency range at a fine res-
olution, which demands a high computational complexity.

4.4 Reference-based Detection
In Section 4.1, we have seen conditions under which anti-

forensic operations can be detected. In particular, a forged
and an unforged audio signal can be distinguished if their
narrowband characteristics are available. Here we consider
a special setting called reference-based anti-forensics detec-

tion, in which it is assumed that when a query signal is
present whose ENF signal remains to be authenticated, a
reference signal with similar ENF sensing conditions is also
accessible. Note that this is in contrast to the blind detection
method that we have discussed previously. The reference-
based setting is possible in many practical scenarios. For
example, if the adversary presents multiple pieces of audio
recordings among which some have forged ENF signals, then
the remaining unforged audio recordings can serve as the ref-
erence signals. As another example, consider an audio that
is used as forensic evidence whose authenticity remains to be
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Figure 10: Variance and kurtosis statistics calcu-
lated over 5-second segments on (a) Day 1 and (b)
Day 2.

determined. A forensic analyst can replicate the recording
environment so that the ENF sensing conditions are repli-
cated as well. The reference-based anti-forensics detection
can be seen as a resource-augmented detection, and as we
know, this has not been exploited previously.

In the reference-based anti-forensics detection setting, since
the reference signal contains an authentic ENF signal, in-
formation about PXI,o(i) can be learnt from the statistics
of the reference signal. Specifically, by writing PXI,o(i) =

PXI(i)
P (o|i,X)
P (o|X)

, one can detect an anti-forensic operation

upon a query audio signal if it leads to a low PXI(i). To ver-
ify this idea, we collect two audio signals recorded on two dif-
ferent days (10 January and 14 January 2012, respectively).
The two audio clips were made by playing online streaming
via the same speaker and recording using the same micro-
phone. The placement of the microphone and the speaker
volume, however, are not exactly the same on the two days.
For a given audio file whose narrowband surrounding 60Hz is
denoted by B(n), we divide B(n) into segments of a 5-second
duration, and calculate sample statistics for each segment.
In particular, we examine the variance that measures how
each sample spreads out from the average value, and the kur-
tosis that measures the“peakedness”of each sample, defined
as

Var(B) = E[(B(n)− B̄)2], (8)

Kur(B) =
E[(B(n)− B̄)4]

E2[(B(n)− B̄)2]
, (9)
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Figure 11: (a) The source narrowband signal in time domain; (b) the envelope of the native narrowband
signal; (c) the resulting narrowband signal after envelope matching of (a) to (b).

Figure 12: Spectrogram with an envelope-adjusted
narrowband. Notice the inconsistency around 120Hz
in Fig. 9 is no longer visible.

respectively, where B̄ is the average value of B(n) in a seg-
ment. We plot the two statistics corresponding to unforged
and forged signals for Day 1 and Day 2 in Fig. 10(a) and
Fig. 10(b), respectively. We can see that both the unforged
and the forged signals have stable statistics on the two days,
and unforged and forged signals show noticeably separable
statistics values. Therefore, if we are given any of these two
unforged recordings as reference, we can detect anti-forensics
over the other recording by checking the consistency of the
statistics. This idea of reference-based anti-forensics detec-
tion can be further augmented by incorporating other useful
statistics.

5. IMPROVING ANTI-FORENSIC
OPERATIONS

Being aware of the anti-forensics detection methods pro-
posed in Section 4, the adversary will naturally improve the
anti-forensic operations. In this section, we examine a few
possible methods toward this goal, and discuss their trade-
offs.
To cope with the inter-frequency consistency check, the

adversary can alter multiple ENF harmonic frequencies. Two
issues have to be addressed by the adversary. First, the al-
teration has to be performed with regard to possible signal
quality degradation. This is because altering the ENF sig-
nal at higher harmonics involves applying bandstop filter-
ing by the adversary’s anti-forensic operations to the audio

signal at higher frequencies, which usually has richer con-
tent. Second, from a forensic analyst’s point of view, as more
ENF frequencies are affected, more traces will be left that
may be exploited by the reference-based anti-forensics detec-
tion. Nevertheless, as discussed in Section 4.2, ENF signals
generally can only be extracted reliably at lower harmonic
frequencies. Around these frequencies, host signal quality
degradation is barely noticeable according to our subjective
perceptual evaluation. As such, the two issues above are not
serious in practice.

5.1 Envelope Adjustment
Recall that the anti-forensic operations proposed in Sec-

tion 3 may result in inconsistency on the spectrogram. This
is because the embedded narrowband may have different
temporal magnitude variations. To address this issue, an
adversary can try to adjust the envelope of the narrowband,
so that the adjusted narrowband has similar temporal vari-
ation as the native narrowband. Such adjustment can be
done by means of the Hilbert Transform [5]. Specifically,
the Hilbert Transform of a real-valued narrowband signal in
the form of

b(t) = A(t) sin(2πfct+ φ) (10)

is given by

H{b(t)} = b(t) + jA(t) sin
(

2πfct+ φ+
π

2

)

= b(t) + jA(t) cos(2πfct+ φ), (11)

which includes a purely imaginary part that is π/2 phase-
shifted from b(t). As a result, the amplitude equals to
|H{b(t)}| = A(t), where the periodical part sin(2πfct + φ)
is no longer present. The envelope adjustment is done by
matching the envelopes of the native narrowband and the
forged narrowband in the following form:

b̂h(t) =
|H{bh(t)}|

|H{bs(t)}|
bs(t), (12)

where bs(t) is the alien narrowband signal (source), and bh(t)
is the native narrowband signal (host). Examples of bs(t)
and |H{bh(t)}| are shown in Fig. 11(a) and Fig. 11(b), and
the resulting narrowband is given in Fig.11(c). It is clear
that the narrowband from the alien signal has been adjusted
with a matched envelope. The spectrogram after envelope
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Figure 13: Comparison of normalized correlation
values with and without envelope adjustment. Note
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adjustment is given by Fig. 12, which no longer exhibits the
spectrogram inconsistency as in Fig. 9.
Envelope adjustment may cause some loss of fidelity in the

embedded ENF signal, which can be seen in the following
experiment. We perform the narrowband transplantation
proposed in Section 3.2 on 13 different audio files. Specif-
ically, for each audio file, we extract the narrowband from
another arbitrarily chosen file and transplant the extracted
narrowband into the audio file as described in Section 3.2.
For these 13 audio files, We first calculate the normalized
correlation between the ENF signal present in the alien nar-
rowband and the ENF signal in the forged narrowband. We
then perform envelope adjustment and also calculate the
normalized correlation between the ENF signal in the alien
narrowband and the ENF signal in envelope-adjusted nar-
rowband. As shown in Fig. 13, the normalized correlation
reduces from a value close to 1 to about 0.6 as a result of
the envelope adjustment. That is, the envelope adjustment
introduces distortion to the ENF, which suggests that an
adversary only has limited capabilities of preserving the fi-
delity of the spectrogram and embedded ENF signal at the
same time.

5.2 Matching the Statistics
We have seen in Section 4.4 that due to the limited fi-

delity of ENF embedding, anti-forensic operations may be
detectable with the aid of certain statistics from a refer-
ence signal. As such, an adversary also has the incentive to
match the statistics. We have found that the envelope ad-
justment technique discussed in Section 5.1 can effectively
match the two variance and kurtosis statistics, as shown in
Fig. 14. However, while the adversary matches these two
statistics, some other statistics may be affected. Fig. 15
shows the peak magnitude at 60Hz on the FFT result with
and without envelope adjustment. We can see that, enve-
lope adjustment consistently increases the peak magnitude,
which can be exploited accordingly by the forensic analyst to
detect anti-forensic operations. This phenomenon is funda-
mental and indicates that some mismatch always takes place
if the adversary only has limited knowledge about how ENF
is formed in an audio signal. For both forensic analysts and
adversaries, it is therefore crucial to acquire a deeper under-
standing of ENF’s underlying mechanism so as to mimic or
to scrutinize the fidelity of ENF embedding. The relations
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between forensic analysts’ and adversaries’ actions will be
discussed in more depth in the next section.

6. INTERPLAY BETWEEN FORENSIC
ANALYST AND ADVERSARY

Summarizing our proposed forensic and anti-forensic op-
erations developed upon empirical data, we can see a highly
dynamic interaction between the forensic analyst and the
adversary. In this section, we consider such an interaction
from two perspectives. The first perspective treats the inter-
action as an evolutionary process, in which both the foren-
sic analyst and the adversary improve their actions grad-
ually in response to each other’s action. We then present
a game-theoretic perspective, formulating a game between
the forensic analyst and the adversary that highlights the
fundamental relation between the players.

6.1 An Evolutionary Perspective
In a security context, system defenders and attackers ex-

ploit vulnerabilities in each other’s solutions and advance
their own solutions. There is always an evolution between
the two parties, which has been observed in many practical
scenarios such as computer virus v.s. anti-virus competition
[7] and the“arms race” for attacking v.s. securing online rep-
utation systems [12]. In a similar spirit, such an evolution
can also be observed in ENF analysis, resulting in strategies



from simple to complex. Indeed, technical advancements
listed below have taken place in this paper:

1. A forensic analyst extracts ENF at the fundamental
frequency (e.g., 60Hz). This is sufficient since the ENF
signal is stronger compared to the narrowband at the
fundamental frequency so ENF extraction is accurate,
and the forensic analyst does not examine harmonic
frequencies that will incur additional complexity.

2. Given the practice in the previous step, an adversary
naturally alters the ENF signal at the fundamental
frequency using anti-forensic operations proposed in
Section 3 such as ENF signal removal and embedding.

3. In the presence of the adversary, the forensic analyst is
now motivated to extract the ENF signal from other
harmonic frequencies to examine the inter-frequency
consistency, at the cost of higher complexity.

4. In response to the forensic analyst, the adversary also
has to make cohesive changes to the ENF signal at
higher harmonic frequencies. However, the adversary
takes the risk of distorting the host audio signal and
has a higher chance of being caught by the reference-
based detection.

5. The forensic analyst now has to take into account more
advanced detection methods at additional costs, such
as checking the spectrogram consistency.

6. In response to the forensic analyst, the adversary can
increase the spectrogram consistency via envelope ad-
justment. However, this may sacrifice the ENF fidelity.

7. Given that the adversary has addressed the blind de-
tection methods, the forensic analyst can resort to
non-blind detection such as checking the ENF embed-
ding statistics, which involves the use of reference sig-
nals. The means that the forensic analyst can improve
his/her capability if more resources are available.

8. In response to the forensic analyst, the adversary now
improves the ENF embedding fidelity by matching the
statistics at the analyst’s disposal. However, we have
seen that matching a subset of the statistics may lead
to mismatch of other statistics, and it is difficult to
perfectly replicate the authentic ENF formation pro-
cess.

9. Now the forensic analyst has to seek additional anti-
forensics detection methods. The interplay continues.

As this paper is the first step regarding anti-forensics and
countermeasures of ENF analysis, we expect that such evolu-
tion will continue, and increasingly more sophisticated anti-
forensic strategies and countermeasures will emerge, push-
ing forward the research that improves the security of the
ENF-based time stamp.

6.2 A Game-Theoretic Perspective
The interplay between the forensic analyst and adversary

in the ENF analysis can be further understood under a
game-theoretic framework that is extended from the work in
[11]. Consider that the forensic analyst (denoted by Player
FA) extracts the ENF signal at the fundamental frequency

(e.g., 60Hz). Due to the possible presence of the adversary
(denoted by Player AD) who would perform anti-forensic
operations upon the audio signal, Player FA cannot simply
trust the extracted ENF signal until an anti-forensics de-
tector confirms its authenticity. As an illustrative example,
assume that Player AD performs ENF embedding proposed
in Section 3.2.

A detector can be characterized by its structure and per-
formance metrics. In this paper, we consider a composite
construction of anti-forensics detectors. Specifically, con-
sider a total of N individual detectors Di, 1 ≤ i ≤ N , each
relying on different signal characteristics to generate a bi-
nary output (T/F) with respect to an input audio signal.
An overall anti-forensics detector Dall can be constructed
using a simple OR-rule:

Dall =

{

T, if Di = T for any 1 ≤ i ≤ N,

F, otherwise.
(13)

Note that in practice, the detector has constraints on its
affordable complexity and the available resources, which de-
termine the individual detectors that can be incorporated
into the overall detector. The performance of the detector
is measured in terms of its detection probability and false
alarm probability. It is well known in detection and decision
theory that there is a trade-off between these two probabili-
ties of a given detector: the false alarm probability increases
as the detection probability increases. For a total false alarm
probability Pf,all allowed for Dall, Player FA’s strategy se-
lects and configures individual detectors so that the total
false alarm probability equals to Pf,all.

On the other hand, in response to Player FA’s anti-forensics
detection, Player AD will seek to hide the traces of anti-
forensics. There may also be complexity and resource con-
straints imposed on Player AD’s actions, and Player AD
has to select his/her strategy under the constraints so that
Player FA’s detection capability is minimized while the em-
bedded ENF signal is maximally preserved. Given a pair
of Player FA and AD’s strategies, the utility that Player
FA will maximize is the total detection probability of anti-
forensics Pd,all. In contrast, Player AD’s utility is to mini-
mize Pd,all, with additional penalty when distortion is intro-
duced to the ENF signal that Player AD intends to embed.

The specific operations proposed in Section 4 and 5 can be
studied under the game-theoretic formulation. In terms of
Player FA’s detector construction, if more strict constraints
on complexity and resources are imposed, then Player FA
may only use the low-complexity inter-frequency consistency
check as the anti-forensics detector. If a higher complexity is
permitted, then the spectrogram consistency detector can be
incorporated into the overall detector. Furthermore, if the
resources accessible to Player FA are enhanced, for example
via the reference signal or via an improved understanding of
the ENF mechanism, then Player FA can construct an even
more sophisticated detector. On Player AD’s side, alter-
ing ENF in multiple frequencies is cost-effective against the
inter-frequency consistency check, but cannot resist other
types of anti-forensics detection. Nonetheless, if higher com-
plexity is allowed for Player AD, he/she can employ envelope
adjustment to reduce the anti-forensics detection probabil-
ity, although at the same time, the embedded ENF signal
may suffer from distortion. Similar to Player FA, if more
resources, in particular an improved knowledge of the ENF
embedding, are available to Player AD, then Player AD can



also improve the anti-forensic capability. Our ongoing work
builds on the understanding of the strategy space of Player
FA and Player AD from this paper, and is evaluating the
utilities of both players either analytically or numerically,
so that the Nash equilibrium strategies can be determined.
This will lead to an understanding of the stable interplay
pattern between the two players.

7. CONCLUSIONS
The time stamp based on the Electrical Network Fre-

quency (ENF) has been shown to be a promising tool for
authenticating digital audio and video recordings. However,
as in many other scenarios of computer and communication
security, the existence of adversaries raises a serious concern
regarding the security of the ENF-based time stamp and
makes it crucial to understand and address possible vulnera-
bilities in ENF analysis against anti-forensic actions. In this
paper, we have investigated anti-forensic operations that can
remove and alter the ENF signal present in a host audio sig-
nal. We have developed a mathematical framework for ENF
modification, which not only entails the effectiveness of ENF
modification and challenges of anti-forensics detection, but
also motivates detection methods from a forensic analyst’s
point of view. Improvements over the anti-forensic opera-
tions in response to the anti-forensics detection are further
proposed and their corresponding trade-offs are discussed.
To understand the highly dynamic nature of the forensic
analyst-adversary interplay, we have developed an evolution-
ary perspective and a game-theoretic perspective, which can
be used to characterize a wide range of actions that may take
place.
Our ongoing work includes experiments that cover a vari-

ety of testing conditions, including different geographic areas
and recording devices, and the evaluation of utility func-
tions associated with different players in our proposed game
formulation. In view of the potential employment of ENF
analysis for media data authentication, we envision that its
security will receive increasing attention, and research along
this direction will contribute to more secure and reliable time
stamp schemes based on ENF analysis.
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